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A class of high resolution multidimensional wave-propagation
algorithms is described for general time-dependent hyperbolic sys-
tems. The methods are based on solving Riemann problems and
applying limiter functions to the resulting waves, which are then
propagated in a multidimensional manner. For nonlinear systems
of conservation laws the methods are conservative and yield good
shock resolution. The methods are generalized to hyperbolic sys-
tems that are not in conservation form and to problems that include
a’“capacity function.” Several examples are included for gas dynam-
ics, acoustics in a heterogeneous medium, and advection in a stra-
tified flow on curvilinear grids. The software package cLawpack im-
plements these algorithms in Fortran and is freely available on the
Web. One and two space dimensions are discussed here, although
the algorithms and software have also been extended to three
dimensions. © 1997 Academic Press

1. INTRODUCTION

A new class of wave-propagation methods has been de-
veloped for solving multidimensional hyperbolic systems
of partial differential equations, which includes (but is not
limited to) nonlinear systems of conservation laws. These
methods are based on solving Riemann problems for waves
that define both first-order updates to cell averages and
also second-order corrections. These correction terms are
modified by limiter functions to obtain high resolution
results. In one dimension this follows standard techniques
developed over the past two decades for nonlinear conser-
vation laws, particularly the Euler equations of gas dy-
namics.

The methods are extended to two and three space
dimensions by a natural wave-propagation approach that
captures the cross-derivative terms needed for second-
order accuracy while allowing the use of simple one-dimen-
sional limiters with good effect. Moreover, the methods
are stable in general for Courant numbers up to 1, where
the Courant number is measured relative to the maximum
wave speed in any direction. This is an improvement over
the stability bounds of the standard multidimensional Lax—
Wendroff method, for example. Stability is discussed in
Section 3.7.

In one space dimension the standard conservation law

has the form
9+ f(@):=0, (1)

where g € R is the vector of conserved quantities. Here
we also consider the more general variable-coefficient qua-
silinear form

qi+ A(g, x,1)q, = 0, )
and the methods are formulated in a general manner that
also allows their application to hyperbolic systems that
are not in conservation form, e.g., the variable-coefficient
linear systems of equations for acoustic or elastic wave
propagation in a heterogeneous medium.

The methods are based on solving Riemann problems
for the wave structure and then introducing a fluctuation
splitting technique that generalizes the notion of flux-differ-
ence splitting from conservation laws. The left-going and
right-going fluctuations capture the net effect of all left-
going and right-going waves, and these fluctuations are
then split in the transverse direction in the generalization
to more space dimensions.

A further generalization is obtained by using capacity-
form differencing, which allows application to problems
such as flow in a porous medium with variable porosity
[2], or in a stratified flow with variable density (Section
3.9). This form also simplifies application on curvilinear
grids (Section 3.10).

These methods have been implemented in the software
package cLawPACK (conservation laws package), a collec-
tion of Fortran routines freely available from net | i b [28].
To browse through this package on the Web, the URL is

ht t p: // ww. amat h. washi ngt on. edu/ ~rj |/ cl awpack. ht m
This package includes numerous examples for a variety of

different hyperbolic systems of equations, including most
of the examples in this paper. A primary motivation for
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this work was to make the sophisticated high-resolution
methods developed largely in the gas dynamics community
available to a wider range of users, and it is hoped that
this will be useful to both students and researchers in many
applications areas. The extensions discussed in this paper
were motivated by specific applications problems, and a
variety of other applications with sample numerical results
can be found in the software and User Notes [29]. The
software is described very briefly in Section 4, but few
implementation details of cLawpack will be discussed
here. These are provided in the cLAwPACK documentation
and in the User Notes [29]. An overview of the package
was given in [34] which describes much of the philosophy,
although many of the implementation details presented
there are now out of date.

The present paper contains a detailed discussion only
of the one- and two-dimensional methods. Extension to
three space dimensions has been carried out, as well, in
joint work with Jan Olav Langseth and will soon be avail-
able in cLawpack. Details are discussed in [23, 24].

Recently cLawpack has been combined with the adap-
tive mesh refinement code of Marsha Berger [4, 5, 8-10].
This yields a very general adaptive refinement package
that has all of the features of the algorithms presented
in this paper, e.g., the ability to handle nonconservative
hyperbolic equations, capacity form differencing, and ex-
tensions to curvilinear grids. The details of this implemen-
tation are presented elsewhere [11]. This AMRCLAW soft-
ware is also freely available [12]. See

http://ww. amat h. washi ngt on. edu/ ~rj |/ anrcl aw

for details and some sample results.

While the multidimensional wave-propagation algo-
rithms proposed here are somewhat different from multidi-
mensional algorithms in the literature, there are many simi-
larities with other approaches, at least in the case of a
conservation law in standard form. In particular the basic
idea of obtaining ‘high-resolution” methods based on
some form of slope limiter or flux limiter has a long history
of development. Many references, along with an overview
of the one-dimensional theory, can be found in [32].

Radvogin [41] has also developed multidimensional up-
winding schemes that are based on splitting the coefficient
matrices as in Eq. (38), which is the basis of the multidimen-
sional methods developed here. These methods are quite
similar for the case of constant coefficient linear systems,
although the limiters are applied differently. For nonlinear
problems Radvogin’s approach is based on a flux-vector
splitting, whereas the wave-propagation algorithms are
based on flux-difference splittings or generalizations.

Another class of similar methods is exemplified by the
method of Colella [13] (see also [3, 47, 59]). A comparison
of the wave-propagation methods with these methods is
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givenin Section 5. A variety of other approaches to multidi-
mensional methods have also been proposed. A few exam-
ples can be found in [15-19, 22, 50, 52, 57].

In the context of advection, an overview of related meth-
ods is given in [35]. That paper also describes the wave-
propagation algorithms developed here in a relatively sim-
ple context, where the algorithms can be more easily under-
stood geometrically.

2. ONE SPACE DIMENSION

The algorithms developed here are based on solving
Riemann problems at the interface between grid cells. We
first consider the standard conservation law (1) and briefly
review the definition of Godunov’s method, writing it in
wave-propagation and flux-difference splitting forms that
will then be generalized to the quasi-linear system (2).
Extension to high resolution second-order methods using
limiters will be discussed in Section 2.4.

2.1. Conservation Laws

The Riemann problem for (1) consists of this conserva-
tion law together with piecewise constant initial data

q; ifx<O0

q(x,0) = qo(x) = { ®)

q, ifx>0.

With suitable restrictions on f, the solution is a similarity
solution ¢g(x, t) = Q(x/t) which consists of a set of waves
moving at constant speeds [14, 25].

For the second-order corrections discussed in Section
2.4, we will need to assume that in fact ¢, — ¢; can be
decomposed as

MW
a—q= ", 4)
p=1

where 77 € R™ is the jump across the pth wave, M,, is
the number of waves, and each wave has an associated
wave speed I € R. This requires that all waves be disconti-
nuities, i.e., no rarefaction waves. For nonlinear systems
such as the Euler equations we assume an approximate
Riemann solver such as Roe’s solver [42] (see Section 3.6)
is used to produce this.

The first-order Godunov method is implemented in a
form that does not require these waves explicitly, however.
Instead it requires a flux-difference splitting, which is a
decomposition of f(q,) — f(q,) into a left-going flux differ-
ence, denoted symbolically by .©/"Aq, and a right-going
flux difference, denoted by ./ *Aq, with the property that

A Aq + ./t Aq = f(qr) — f(q)- )
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FIG. 1. Waves, interface values, and flux differences for Godunov’s method.

For the classical Godunov method, let g* = Q(0) be the
value along x/t = 0 in the solution to the Riemann prob-
lem. Then

</ ~Aq = f(q*) — f(q1)

) . ()
</ "Aq = f(q,) — f(q*).
If a wave decomposition of the form (4) is available, one
could alternatively set

A Ag = NP WP
420 ™)

AHAG =D (NP,
p

where A" = max(A, 0) and A~ = min(A, 0). In the case
where a Roe solver is used for a nonlinear system, (7) may
not satisfy the entropy condition unless an ‘“‘entropy fix”
isincluded in the definition of ./ ~Aq and .</ *Aq [21, 32, 45].

The notation ./ “Ag and .«/*Agq is motivated by the case
of a constant coefficient linear system

g+ Agq, =0, 3)
in which case

A Aqg=A(q—q), SAq=S"(q—q), ()

where the matrices A* are defined as

A* =RA*R . (10)
Here R = [r!|r?|- - -|r™] is the matrix of right eigenvectors
(with some choice of normalization), A = diag(Al, ..., A™)
is the eigenvalue matrix, and A* = diag((A!), ..., (A™)%).
Note that in this case %7 = afr?, where o = R™'Aq.
Now consider a one-dimensional grid with cell average
q" in the grid cell [x;, x4 ] at time ¢, (see Fig. 1). Godunov’s

method is obtained by constructing a solution over the
time step as indicated in the figure. With piecewise constant
initial data we can solve Riemann problems at each inter-
face and piece these together to get the global solution for
a sufficiently small time step. Averaging this solution over
the ith grid cell at time ¢,,,; gives the new cell average
q"*'. Below we generally drop the superscript on g7 and
denote ¢7*! by g;.

By integrating the conservation law over this grid cell
one can then show by a standard argument (e.g., [32]) that
the new cell average is given by

Gi=a,~ S (Flat) ~ flap)) (1)

where g} is the intermediate state arising in solving the
Riemann problem at x;. This numerical method is clearly
in standard conservation form and is typically stable for
Courant numbers up to 1.

For purposes of generalizing the methods, however, we
will rewrite Godunov’s method in a different form. Manip-
ulating (11) with the help of the expressions (6), we can
derive

_ A

t ;e
=49~ Ay (A" Agi + . AG)- (12)

Here .o/ *Agq; is the right-going flux difference from solving
the Riemann problem between g;_; and g;. From the inter-
pretation (7) we see that this models the combined effect
on the cell average g; of all waves entering the cell from
the left edge. Similarly, .c/ “Aq; .1 is the left-going flux differ-
ence from the Riemann problem between ¢g; and ¢,,, and
models the combined effect of all waves entering the cell
from the right (see Fig. 1).

The form (12) will be used in general. For a system of
conservation laws, this method is conservative and consis-
tent for any flux-difference splitting that satisfies (5).
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2.2. Nonconservative Systems

The extension to more general hyperbolic systems is best
illustrated by a simple example. Consider the equations for
acoustics in a heterogeneous medium. The equations can
be written as a first-order variable coefficient linear system

P+ K(Xx)u, =0 13)

pX)u, + p =0,

where the unknowns are the pressure perturbation p(x, t)
and the velocity u(x, t). The variable coefficients are the
density p(x) and bulk modulus of elasticity K (x). We can
write this system as

q: + A(x)g, =0,

eLoh el )
u 1/p(x) O

We assume that the ith cell has material parameters p; and

K; and set
0 K;
Ai = .

The sound speed in the ith cell is ¢; = V K;/p;. The solution
to the Riemann problem between states g;_; in cell i — 1
and q; in cell i consists of two waves. The left-going wave
moves into cell i — 1 with velocity A} = —¢;_; and the jump
across this wave must be a scalar multiple of the eigenvec-
tor rL, of the matrix A, ,

—c
W= ! e
W=« |:1/Pi1:|

The right-going wave moves into cell i with velocity
A? = ¢; and the jump across this wave is a multiple of r?,

W2 = o2 Ci
W= |:1/Pi:|’

for some scalar a?. The state between the two waves must
be continuous across the interface (the proper physical
jump condition) and so

where

Gt =g 0
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From this we obtain a linear system which can be solved
for the wave strengths o and o?, yielding

al = (=Aq'/p; + ¢;Aq*)/(c;_\/pi + cilp,_y)
o = (=Aq'Ip + ¢ Ag?) (¢ y/pi+ cil piy).

We then define the “flux-difference splitting” by

A Dgi= NI
(14)
A Dg = N2

Note that this is not really the splitting of any flux differ-
ence in this nonconservative problem. In particular,

A Aq; + AAG F A g — A g

Nonetheless, Godunov’s method, with the same physical
interpretation of solving Riemann problems based on
piecewise constant initial data and then computing cell
averages to define g;, can be implemented in the form (12)
and is effective for this problem. (Numerical results are
presented in Section 2.6 after introducing the second-or-
der corrections.)

2.3. Fluctuation Splitting

It seems desirable to have a term for ./ "Aq and .=/ *Aq
other than “flux-difference splitting” in the general case
where there may be no flux function. In early work of Roe
(e.g., [43, 44]) the term fluctuation was often used for flux
differences and was even used in the context of nonconser-
vative formulations of the Euler equations in [44]. T pro-
pose reviving this term with a specific meaning that general-
izes the notion of a flux difference. For a general Riemann
problem we can define a fluctuation </Aq which will be
split into a left-going fluctuation .©/~Aq and a right-going
fluctuation .o/ *Aq. The definition used here will be different
from Roe’s use of the term in two space dimensions, how-
ever. Roe viewed the fluctuation as measuring the devia-
tion from equilibrium in a steady-state problem, and so
in two space dimensions he defined the fluctuation as an
approximation to f, + g, over the grid cell. Here the fluctu-
ation will always refer to the total effect on the solution
due to waves arising from a one-dimensional Riemann
problem at a cell edge, in any number of space dimensions,
and will be associated with a Riemann problem rather than
a cell.

In the acoustics example given above, we first defined
waves 7P with speeds A” for each Riemann problem, and
the fluctuation splitting was then naturally defined by (14).
This generalizes to (7) for a problem with M, waves in
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the solution to the Riemann problem. The total fluctuation
97/Aq can then be defined a posteriori as
MW
NG = A AG+ A TAG =D NP,

p=1

Note that this has the physical interpretation of measuring
the total effect of waves arising from this Riemann problem
on the total integral of g (per unit time).

Alternatively, we can define the fluctuation without ref-
erence to the waves if we assume the Riemann problem
between states q; and g, has a similarity solution of the
form Q(x/t), as it must have whenever we can define waves
propagating at constant speeds, which is a basic assumption
for the methods developed here. (For a variable coefficient
problem such as the acoustics problem above, this requires
using piecewise constant coefficients in the definition of
the Riemann problem. This is consistent with the accuracy
that can be expected for such problems, even with second-
order corrections added to the algorithm as discussed in the
next section.) Then we can define the fluctuation associated
with this Riemann problem by

g = |7 (@ ~ 09 de, (15)

where g is defined by (3). Because of the finite propagation
speeds, this integrand is nonzero over a bounded region
and the integral is finite. The fluctuation splitting is then
given by

A 8g =" (Q(&) ~ qo(8)) d¢

=[".©® ~a) s (16)
7Aq = [(Q®) ~ q0(9) de
= [l (0® -q,) dz (17)

Clearly these are exactly the integrals needed in defining
Godunov’s method via integration over the grid cell at
time f,.;, and again the method takes the form (12).

2.4. Second-Order Corrections

Godunov’s method is extended to a high resolution
method by adding an additional term. The form of the
extended method is

At At~ -
qi=4qi — E(‘W “Agq; + . TAqy) — E(F‘+1 - F).

L 1

(18)
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Note that the corrections are in a “‘flux-differencing” form,
and in fact this form can be used even in the case of
nonconservative equations. The correction flux F; is de-
fined in terms of the waves 7/"? and speeds A? arising from
the ith Riemann problem, and it is only at this point that
the individual waves are needed, rather than the lumped
fluctuations .«/*Aq. A decomposition into waves allows
us to apply limiter functions to reduce oscillations near
discontinuities by comparing the pth wave to the pth wave
arising from the neighboring Riemann problem. This is
discussed below.

In the absence of limiters, the second-order corrections
take the form

R

MW
I ) EA D)

N =

This is a standard expression; see, e.g., [32, 58]. It can be
interpreted as arising from propagating a piecewise linear
“correction wave” as described in [30, 31, 35].

For the linear system (8), the method (18) with fluctua-
tions (9) and corrections (19) reduces to the standard Lax—
Wendroff method. For an autonomous nonlinear system
of conservation laws of the form g, + f(q), = 0, these
correction terms give full second-order accuracy and the
method is a variant of Lax—Wendroff in this case.

For nonautonomous problems of the form ¢q, +
f(g, x), = 0 or g, + A(q, x)q. = 0 (e.g., the acoustics
problem above), this form of the corrections does not give
second-order accuracy formally. However, it does elimi-
nate the dominant diffusive term in the first-order error
and gives results that are as well resolved as we would
normally expect from a high-resolution method. The re-
maining first-order error corresponds to a slight shift in
the location of the solution, rather than in the excessive
smearing seen with the first-order upwind method, for ex-
ample.

To see this, consider the advection equation

g+ u(x)q. =0 (20)

with u(x) a given smooth function. Taylor expansion
shows that

q(x, t + At) = q(x, 1) + At q,(x, 1) + 3(A1)°q, (x,0) + - -
=q — Atu(x)q, + 3(A0)*u(x)[u(x)g,]. + - - -

For second-order accuracy we need to match the first three
terms, which can be rewritten as

q = Atu(x)q, + (A1 (xX)qe + u(X)u’ (x)q,]. (21)
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FIG. 2. Solution to g, + xq, = 0 with first-order upwind method (on left) and using ‘“‘second-order” correction terms (on right). The dashed

line shows the initial data.

The method proposed here can be applied to this problem
by setting

//l' =dqi— qi-1, )\l]- = Ui
.,,C}//_Aq,‘ =U;_p (q: - ql‘-l)’
A +AG = u (g~ qiy)-

Suppose, for example, that u > 0 everywhere. Then the
above method, with ‘“second-order’ corrections, can be
arranged to yield

n+l

At n n n n
qi" =qi — 2Ax (Uiip (@ — qiy) + (gl — q7))

1A
* 2 <E> Ui — ) = ui (@) — q10)

This is clearly a second-order accurate approximation to

q = Atu(x)q. + HA[1*(x)g. ],

which can be rewritten as
q — Atu(x)q, + (A1) [17(x) e + 2u(x)u’ (x)q.])-

Comparing this with (21) shows that we have correctly
modeled the u?q,, term (failing to do so results in numer-
ical diffusion as in upwind), but we have an error of
3(Ar)’u(x)u’ (x)q.. This is equivalent to replacing u(x)g, in
the second term by

(1 — 3Am’ (x))u(x)q, = u(x — 3Atu(x))q..

In other words, there is an O(A¢) error in the advection
speed. The resulting error is much less dramatic than with
a diffusive first-order method. This is illustrated in Fig. 2,
where the equation g, + xg, = 0 has been solved both
with and without the ‘“‘second-order” correction terms.
The equations are solved on a grid with Ax = 0.04 and
At = 0.009.

Although it would be possible to modify the algorithm
to obtain formal second-order accuracy on smooth solu-
tions, it would no longer be in the unified framework that
allows the limiters introduced in the next section to be
applied in the standard manner on a wider variety of prob-
lems. The interest here is in problems where the use of
such limiters is important (e.g., discontinuous solutions)
and, once the limiters are introduced, formal second-order
accuracy is typically lost anyway. The extension to nonau-
tonomous problems introduced here gives algorithms that
work essentially as well on such problems as on classical
autonomous conservation laws. For further illustration of
this, see the example in Section 2.6.

2.5. Wave Limiters

To reduce spurious oscillations and obtain a high resolu-
tion method it is necessary to introduce limiter functions
that modify (19) near discontinuities. Depending on the
interpretation these are generally called flux limiters or
slope limiters. (See, e.g., [20, 58, 60].) In the present context
these could also be called wave limiters, as it is the magni-
tude of the wave 7% in (19) that will be modified.

We replace each /"7 by a limited version 7/ 7, which
is obtained by comparing 7% to the corresponding p-
wave 7/ "¢ or /%, arising from the solution to the Rie-
mann problem at the adjacent grid point to the left or
right. The direction is chosen to be the upwind direc-
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tion; i.e., we look to the left if A? > 0 and to the right if
AP <0.
In the case of the linear system (8) we have

VP = P P
WE=alrP,

where o is a scalar and the vector r” is independent of i.
Then we can simply apply the limiter to the scalars o?,
setting 7/ 7 = &PrP, where @” is the limited wave strength.
This is calculated by applying some limiter function ¢ to
the ratio of this wave strength to the strength of the neigh-
boring wave in the same family, looking in the upwind
direction,

a? = ¢(67)a?,
where

if A2 >0

p i—1
Z—i withl={ (22)

o7
i+1

i if A2 =0.

The ratio of wave strengths 67 is used to measure the
smoothness of the solution. Where the solution is smooth,
this can be expected to be near 1. Near discontinuities in
the pth family, #” may be far from 1. A wide variety of
limiter functions have been studied. Some standard limiters
used here are

minmod: ¢(6) = max(0, min(1, 8))

superbee: ¢(6) = max(0, min(1,26), min(2, 6))

monotonized centered
(MQO):  ¢(0) = max(0, min((1 + 6)/2,2,280)).

For variable coefficient or nonlinear problems the wave
77 will not be a scalar multiple of the waves 77, or
7P, from the neighboring Riemann problem, and one
must determine the manner in which these vectors are
going to be compared and modified in applying the limiter.

For concreteness assume A? > 0 so that in the pth family
we compare 7/ ¥ to /% . The approach used here (which
is currently the default of cLAwPACK) is to project the
neighboring wave 777, onto the vector 77 and compare
the length of this projected vector with the length of
777 itself, modifying the length of 7/'7 as needed, but
preserving its direction. This is accomplished by setting

WP WP
gr=_—L ~ L
CT e

7=y,
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where - represents inner product. Note that this reduces
to (22) for a linear system.

A simpler approach would be to apply a scalar limiter
componentwise to each element of the vector 72 and the
corresponding element of 7/°%_,. This also reduces to (22)
for a linear system but typically would not preserve the
direction of 7% in a nonlinear problem. It is not clear at
this point how important this preservation is. (One compar-
ison is presented in [33].)

Another approach is taken in recent work of Liu and
Lax [26, 40]. They use the Roe matrix A; that determines
WP = o r?, via an eigen-decomposition of Ag; = ¢q; —
gi-1, to also decompose Ag; | = 2, 8°r{. Then the limiter
is applied to o and B” to obtain @&?. This requires addi-
tional work but has the advantage that their resulting
scheme can be proved to be a positive scheme in the sense
described in [40].

After defining the limited waves 777 by one of the ap-
proaches above, the F; used in (18) are given by (19) with
7P replaced by 7°7.

2.6. Numerical Results for Acoustics

As an example to demonstrate that this generalization
of one-dimensional high resolution methods to nonconser-
vative systems is effective, consider the acoustics equations
(13) in the extreme case where the sound speed is discon-
tinuous at an interface between two media. We take K =

1 and
{1
P71,

giving a jump from ¢ = 1 on the left to ¢ = 0.5 on the

right. As initial data we take a hump in pressure in the

left region and u = 0. The hump splits into equal left-going

and right-going pieces and the right-going portion hits the

interface, giving transmitted and reflected waves. The

transmitted wave is narrower due to the lower sound speed.
As an initial hump we use

ifx <0.6
if x > 0.6,

p(.0) = {1_)\/1 —((x = x0)/X)? if|x — xo| <X,

otherwise,

with xy = 0.4, x = 0.075, and p = 0.2. This is a half ellipse
of the type used by Zalesak [62] in his comparison of
advection algorithms. This is a nice test because it has an
infinite slope at the corners as well as a region of
smoothness.
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FIG. 3. Computed Results for One-Dimensional Acoustics with a Discontinuity in Sound Speed at x = 0.6.

Figure 3 shows the true solution and computed results
for the pressure at six different times on a grid with 200
grid points, Ax = 0.005 and Ar = 0.004, corresponding to
a Courant number of 0.8 in the left medium, and 0.4 in
the right.

Note that the left-going hump leaves the domain cleanly.
Zero-order extrapolation was used at the boundary, as
discussed in [29]. It is also clear that there are no overshoots

or undershoots, even as the wave passes through the inter-
face. In these tests the minmod limiter was used.

2.7. Capacity-Form Differencing

In many applications it is useful to allow a generalized
form of the conservation law,

k(x)q. + f(q): =0, (23)
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in one space dimension, or

(X, y)q: + f(@)x + 8(q)y = 0, (24)
in two dimensions (or similar generalizations of the qua-
silinear equation (2)).

Here « is a given function of space that I will refer to
in general as a capacity function, since it generally repre-
sents, in some sense, the capacity of the medium at each
point to hold the conserved quantity g. (In some applica-
tions k may also vary with time.) In one dimension, the
corresponding integral form is

a% b q(x, )k(x) dx = f(q(a, 1)) = f(q(b,1)).

Note that this integral can be viewed as the integral of g
against the measure «(x) dx.

ExampLE2.7.1. Inporous media flow k could represent
the porosity, the fraction of the volume that is available
for the fluid to occupy. Consider, for example, a porous
medium in which the porosity and permeability vary only
in one direction, with x, say, and suppose we consider flow
in the x-direction, with zero velocity in the other directions.
If the porous medium is saturated with an incompressible
fluid, then we have the advection equation

Kk(x)q, + uoq, = 0, (25)
where u, is constant for an incompressible fluid. In this
case, k(x) dx is the infinitesmal volume element available
to the fluid at point x. The advection equation (25) would
also be obtained by modeling incompressible flow in a
‘““‘quasi one-dimensional” pipe with variable cross-sectional
area k(x) and a velocity that is assumed to vary only with x.

In two space dimensions we would have an equation of
the form

k(x, y)q: + u(x, y)q. + v(x,y)g, = 0, (26)
where u, + v, = 0. Applications of these algorithms to
saturated groundwater flow are discussed in [2, 29]. See
also [1]. See Example 3.9.1 for a related example of density-
stratified flow.

ExampLE 2.7.2. Suppose we wish to solve the equation
q: + f(g), = 0 on a stretched grid, with grid points

Xi = X(fi),

where X (¢) is some smooth grid mapping function and
& = iA¢ is a uniform computational grid. If we let
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g& t) = q(X(é), t), then the conservation law can be
rewritten as

X'(9q. + f(9):=0

and solved on the uniform grid in &space. In this case
X'(¢) is the capacity function. Note that

X'(é)Afzxm - X,

the length of the ith cell in physical space, so again the
notion of capacity makes sense.

The ability to handle mapped grids is more interesting in
two space dimensions, in which case the capacity function is
the Jacobian of the transformation. General curvilinear
grids in two dimensions are discussed in Section 3.10.

In each of the examples above, it is kg that is really the
conserved quantity although g may be of more physical
significance. One approach to solving (23) would be to
manipulate it to the form

0+ (@i~ () ). @)

which is a standard conservation law with a source term.
Solving in this form may not guarantee conservation of
kg, however, and has the additional problem of introducing
an unnecessary source term.

Another approach might be to define the new variable
P(x, 1) = k(x)g(x, t) and then to solve the conservation law

b+ f(Plk) =0

for s, dividing by « at the end to recover g. This would
guarantee conservation of kg but often has other difficult-
ies such as the inability to preserve uniform states in q.

Instead of reducing Eq. (23) to a more familiar conserva-
tion law by one of the above devices, it is preferable to
apply capacity-form differencing,

- Ar
qi = qi o Ax

At~ ~

o TAq; + A "AG ) — —— (Fi1 — F),
(o7 *Aq; + ./ "Agi) KiAX(Fl F;)
(28)

where k; is the capacity of the ith cell. This is a simple
extension of (18) which ensures that 2 k;q; is conserved
(except for fluxes through the boundaries) and yet allows
the Riemann solution to be computed based on ¢ as in
the case k = 1. In particular, if g; = constant, then typically
the fluctuations and also the waves used to define the F
are all zero, so that g; = g; and constant data is preserved.

The formulas for the second-order correction terms also
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need to be modified in a simple manner to take into account
the function . The second-order correction term (19) is
replaced by

MN/
F,-=1E|Af|(1— = (29)
2 p

el wr
Ki—l/ZAx |/\z |> /7 i
where «;_1,, is some average value of «; e.g., ki1 =
%(&'—1 + Ki)-

Note that in the case of a mapped grid, Example 2.7.2,
k;-12A&1s roughly the distance between the centers of cells
i — 1 and i in physical space, and so 2, 7 ?/(ki-1,A€) is
approximately g,.

This form of differencing is frequently used in practice
in various contexts, but it is not usually presented in the
general framework used here, to the best of my knowledge.
It is a simple yet powerful generalization that allows appli-
cation of finite volume methods to a wider variety of prob-
lems and should be better known.

Sample calculations with capacity-form differencing are
given for a more interesting two-dimensional problem in
Sections 3.9 and 3.10.

3. TWO SPACE DIMENSIONS

In two space dimensions we have the standard conserva-

tion law

q.+ f(q). + g(q), = 0. (30)
We first consider the extension of the wave-propagation
algorithm to multiple dimensions for this case and then
extend to nonconservative hyperbolic systems in Section
3.8. Capacity functions can also be introduced, as in one
dimension (see Section 3.9).

We discretize using a Cartesian grid with uniform spac-
ing Ax and Ay. The cell average over cell (i, j) is denoted
by g;;. The standard flux-differencing form of a conserva-
tive finite volume method is

_ At At
qij = qij — A_x (Fi+1,j - Fi‘) - A_y (Gi,j+1 - Gij)a (31)

where Fj; is the numerical flux at the left edge of cell (i, j)
and Gj is the flux below this cell, e.g.,

. 1 i1 [Yis1 )
F= gl [ by oy aya, (32)

where (x;, y;) is the coordinate of the lower left corner of
cell (i, j).

The multidimensional wave propagation algorithm de-
veloped here could be written in this form when applied
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to a standard conservation law (30), but, again, it is de-
scribed (and implemented) in a more general form which
allows easier application to other hyperbolic problems that
are not in conservation form. The method is imple-
mented as

_ A
qij = qij + AP — Ax (Fi1j— Fy)
(33)
At ~ ~
T Ay (Gijn1 — Gy),

where A}P is the update for a first-order upwind (donor-
cell or Godunov) method, of the form

At ,
AP = — (A AGis1; + 7 TAgy)
(34)
_ A (BAq; ;1 + BHAg;).
Ay ij ' ij

The .«/*Aq and 3*Aq terms represent fluctuations arising
from Riemann problems in the x- and y-directions, respec-
tively. The F and G fluxes are used to perform second-
order corrections and, also, corrections for cross-derivative
terms that arise in two dimensions which did not appear
in one dimension.

The descriptions below will focus primarily on the solu-
tion of a Riemann problem in the x-direction, at an inter-
face between cells (i — 1, ) and (i, j), and the manner in
which the waves from this Riemann problem contribute
to AP, F;, and nearby G fluxes. An analogous procedure
is followed at each interface in the y-direction between
cells (i,j — 1) and (i, j), with a switch in the roles of F and
G and in .©/Aq and #Aq. The symbol Ag; below thus
refers to g; — g;-1,, the difference in the x-direction.

3.1. First-Order Godunov

We begin by solving a one-dimensional Riemann prob-
lem normal to each cell interface, exactly as in one space
dimension. We solve the one-dimensional Riemann prob-
lem g, + f(q), = 0 with data g;_;; and g;;. This results in
a set of M,, waves and speeds, along with a splitting of the
flux difference f(q;) — f(gi-1,;) into two pieces .«/ ~Ag; and
o/ *Aq; moving to the left and right, respectively.

A basic first-order Godunov method is thus defined by
simple extension from one-dimension via (33) and (34)
with F = G = 0. This method is typically stable only for
Courant numbers up to 3 (see Section 3.7).

3.2. Transverse Propagation

The Godunov method described above is based on prop-
agating waves normal to each cell interface. In reality the
waves should propagate in a multidimensional manner and
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ut

(a)

FIG. 4.

affect other cell averages besides those adjacent to the
interface. This is accomplished by splitting each fluctuation
o/ *Aqy for * = + and — into two transverse fluctuations
which will be called #*.c/*Aq,; (the up-going transverse
fluctuation) and #~.«/*Aq; (the down-going transverse
fluctuation). The notation is motivated by the linear system
case mentioned further below.
Figure 4a shows an example for the advection equation
q,+ uq, +vgq, =0 (35)
with velocities u, v > 0, in which case the single wave
should propagate in the direction (u, v). There is a trian-
gular portion of the wave which should move into cell
(i, j + 1), rather than cell (i, j) in this figure. This can be
accomplished by modifying the flux G; ;. at the interface
between these two cells by the appropriate amount,

1 At
Gi,j+1 = Gi,j+1 - EA_xUU(Qi/ - qz‘—l,j)'

This is discussed in much greater detail for the advection
equation in [35].

Introducing transverse propagation has two important
effects. First, it provides the cross-derivative terms g, and
qyx required in a second-order accurate algorithm. Once
the transverse flux differences have been included, second-
order accuracy is easily achieved by including the second-
derivative terms in each coordinate direction (g., and g,,)
using the same correction that is applied in one space
dimension. See Section 3.3 for these terms, [35] for an
analysis of the trunctation error in the case of linear advec-
tion, and [33] for some discussion of systems. Second, the
transverse correction terms improve the stability limit and
allow full Courant number 1, relative to the maximum
wave speed in any direction. This is discussed in Section 3.7.

To generalize the notion of transverse propagation to
a system of equations, we begin by observing that, for
advection, u(q; — ¢q;-1;) is the right-going fluctuation
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B+A+Aqi]’

(b)

(a) Transverse propagation in the advection equation. (b) The four transverse flux differences for a general system of equations.

(which is the entire fluctuation in this scalar case) and that
this should be propagated upward by the vertical velocity
v. The quantity vu(q; — ¢i-1,;), the product of this fluctua-
tion and the vertical velocity, gives the up-going trans-
verse fluctuation.

For a system of equations we typically will have both a
left-going fluctuation .«/ ~Aq;; and a right-going fluctuation
o/ *Ag;;. Each of these will be split into an up-going piece
and a down-going piece, so there will be four transverse
fluctuations modifying the four neighboring G fluxes as
indicated in Fig. 4b.

Again the notation # *.c/*Ag,; is motivated by the case
of a linear system of equations

g+ Aq.+ Bq,=0 (36)

in which case the matrices B* are defined in an analogous
way to A*, based on the positive and negative eigenvalues
of B. The transverse fluctuations are then given by

BEA*Nq; = B*A*(qi — qi-1.)),

where * = + or —.
In general, the transverse fluctuations are used to modify
the four neighboring fluxes according to

~ ~ 1At
Gije1:= Gijr — EE%’ *of TAg;;
~ ~ 1A
=Gy — == B o/ *Ag,;
Gz] Gl,] 2Ax 9 9/ ql] (37)
~ = 1At
Giji1:=Gig 1 — EE‘//JH&/*AL]U-

~ ~ 1A
Gi*l,j:: Giil'j_zﬂ% o Aql,
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For a linear system g, + Aq, + Bq, = 0, the sum of all
the transverse fluctuations is

(B*A*+ B A"+ B*"A~ + B A )Aq = BAAq. (38)

Since Ag represents a difference in the x-direction, and
the G-fluxes are then differenced in the y-direction in up-
dating g, the modification (37) results in an approximation
to 3AtBAgq,,, which is one of the cross-derivative terms
needed in order to achieve second-order accuracy. The
splitting of this term into four pieces based on the signs
of the eigenvalues gives an upwinding of these terms that
substantially improves stability over the centered Lax-—
Wendroff approach, which can be shown to correspond to
using §BAAq in each of the updates in (37) instead of the
splitting (38). Radvogin [41] defines methods for linear
systems that are very similar.

For a linear system of equations, in the special case
where A and B are simultaneously diagonalizable (i.e.,
have the same eigenvectors), the system can be trans-
formed to a set of m independent scalar advection equa-
tions and the modifications (37) are equivalent to applying
the advection algorithm to each of these independent equa-
tions.

Even when A and B are not simultaneously diagonaliz-
able, these transverse fluctuations can also be interpreted
in terms of multidimensional wave propagation. The flux
difference .«/*Agq, for example, is the sum of A? 77 over
all right-going waves. If we now decompose each wave
7P as a linear combination of the eigenvectors of B, say

m

WP = Z BPSWS,

s=1

where Bw® = w'w’, then the subwave B7°w* should be
propagated upwards or downwards with speed w’, de-
pending on whether u* is positive or negative. The up-
going fluctuation, for example, is

Z (Ms )+BPSWS.

Summing these over all right-going waves 77 for A? > (
gives

S0 3 () Brw =3 ()’ (2 (/\”)*B’”> W

14

and it can be easily verified that this is precisely B*A*Aq.
The other transverse flux differences can be interpreted
similarly as combinations of waves in the other three direc-
tions.
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Examples are given below to illustrate these transverse
splittings more concretely. The two-dimensional acoustics
equations are discussed in Section 3.5 and the acoustics
equations with varying material parameters are discussed
in Example 3.8.1. In the latter case the corrections
due to transverse propagation can still be written in flux-
differencing form, even though the system is not conser-
vative.

For a nonlinear system of equations, we must still specify
how the fluctuations .o/ *Aq(* = + or —) defined by solving
the Riemann problem normal to each interface will be split
up into transverse fluctuations. This is typically done by
splitting the vector .o/ *Aq into eigenvectors of an approxi-
mate Jacobian matrix in the transverse direction. If the
Roe approximation is used, for example, then we have an
approximate Jacobian A =~ f'(q) defined at the interface
between cells (i — 1, ) and (i, j) that is based on averaged
values between these two states. The same averaged value
can be used to define an approximate Jacobian B = g'(q)
at this interface. (See Example 3.6.1 for a concrete exam-
ple.) The eigenvectors w* of B can be used to split .7 *Ag;;
just as in the linear case,

We then define

B *Aqy = D, (W) BwW, B/ *Ag =, (W) LW,

where ' are the corresponding eigenvalues of B. Note
that, as for the linear system, this splitting can also be
written as

B A*ANqy; = B (A *Aqy), BoA*Aq; = BT (A *Aqy),

where, again, B is the approximate Jacobian.

Although still only first-order accurate, the inclusion of
transverse flux differences typically improves stability and
allows Courant numbers up to 1 (see Section 3.7). These
terms are also a necessary component of the second-
order accurate method, since they yield the cross deriva-
tive terms that arise in the (Af)?> term of the Taylor se-
ries expansion.

3.3. Second-Order Corrections

Once the transverse corrections described above have
been implemented, it is possible to achieve second-order
accuracy by simply making one-dimensional flux correc-
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tions analogous to (19). It is at this point that the waves
/"% and speeds A% computed in solving the Riemann prob-
lern normal to each interface are used. We make the correc-
tions

(39)

1M
Fyi=F,+ 52 ,]|<1——|)\l,|>
4

where 2/7”5. is alimited version of 7/". The limiter is applied
exactly as in one dimension, so /% is compared to
WEy yor 7P, ;, depending on whether AL > 0 or <0, just
as described in Section 2.4.

This is a potential weak point in the algorithm, since the
limiter does not take into account the behavior of the
solution in the transverse direction. A more sophisticated
multidimensional limiting procedure (e.g., [27, 46, 61])
might be able to control oscillations in multidimensional
problems. However, in practice this one-dimensional ap-
proach to limiting seems to work very well for most prob-
lems and is much simpler to implement and less computa-
tionally intensive than other approaches.

3.4. Transverse Propagation of the
Second-Order Corrections

The above method is already second-order accurate (for
smooth solutions), but it is quite easy to also propagate
the second-order corrections in the transverse direction.
This is motivated by ‘“Method 4” in [35] and, while this
additional correction does not increase the order of accu-
racy, it has been found to improve stability properties and
reduce spurious oscillations in many problems (an example
is given in [35]).

The flux corrections (39) will affect the cell averages
qi-1,jand g;;in the cells to the left and right of this interface.
Hence the transverse propagation of this correction should
affect four G fluxes, those below and above these two cells.
The corrections are split into up-going and down-going
portions in exactly the same manner as .c/*Agq is split into
B A *Ag; and B/ *Ag;;. In fact, the algorithm with this
transverse propagation is implemented by simply modi-
fying .2/*Aq by these second-order corrections before call-
ing the routine that splits these vectors into transverse
fluctuations. The proper modifications are

MW
v dgyi= s da,~ 3 byl (1 - 2 gl ) 73,
> Ax

Mw
A AG = A" Ag + D, M) (1 - g |/\§;-|> e,
)4

Note that the correction term in these updates is exactly the
same as the term that modifies F;; in (39), so this requires
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virtually no additional work. This has been used in all the
numerical results presented below.

3.5. Acoustics

In two space dimensions the acoustics equations for the
pressure perturbation p and velocities u# and v can be
written

q,+Aq,+ Bq, =0, (40)
where
p 0 K O 0 0 K
q= , A=|1/p 0 0], B=| 0 0 0|
v 0O 0 O 1/p 0 0O

The algorithm will be described for the x direction. Analo-
gous formulas hold for y sweeps with the role of u and
v switched.

The Riemann solution for g, + Agq, = 0 between states
gi-1,; and g; consists of three waves, but one always has
speed zero and can be ignored. So we can take M,, = 2
and only use two waves, a!'r! with speed A!' = —c and o?r?
with speed A2 = +c. The eigenvectors are

c —c
rt=11/p|, r*=|1/p|. (41)
0 0
The coefficients are the same as in one dimension,
al =3(—Aqlc + pAg?), o =%(Aqtc + pAg?). (42)
Again the fluctuations are
o/ ~Ag = Aa'rl, o/tAgq = Na¥r? (43)

To obtain the transverse fluctuations we split .o/ *Agq;
into eigenvectors of the matrix B. For the acoustics equa-

tions these are particularly simple. For example, .2/~ Aq
would be split as
—c —c c 0
A Ag=—ca'|llp|=B"] 0 |+B%] 0 |+B3|1],
0 1/p 1/p 0
where

B'=—call2, B%Z=cal'l2, B3>=—callp.
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The three eigenvectors of B displayed above correspond
to eigenvalues u! = —c, u? = ¢, u® = 0, and the third one
plays no role in the transverse propagation. The transverse
fluctuations are then

—C C
l%_(,o/_Aqij = _Cﬁl 0 %)t(\//_Aqij = CBZ 0
1/p 1/p

Some numerical examples for two-dimensional acoustics
(in a heterogeneous material) are given in Section 3.8
below.

3.6. Gas Dynamics

First we summarize the way in which the waves, fluctua-
tions, and transverse fluctuations are computed for the
case of isothermal flow. Numerical results will then be
presented for the full Euler equations.

ExawmpLE 3.6.1. Isothermal flow is governed by a non-
linear system of equations quite similar to the full Euler
equations of compressible flow, but simpler, as it involves
only three equations instead of four and it involves a very
simple equation of state, p = ¢?p, where c is the sound
speed. See [32] for more discussion. Considering this case
should be sufficient to illuminate the main features of the
splittings. (The splittings for the full Euler equations can
be found in [42] and in examples included with the cLAW-
PACK software.)

In two space dimensions the isothermal equations take
the form

p pu pv
|+ 2 puo + u |+ 2 e =0. (44)
a| P T ax | P ay| P '

pU puv pv% + v

Here c is the constant sound speed. Suppose that we use
the Roe approximate Riemann solver to solve the Riemann
problem normal to each cell face. The Roe solver between
states g;_; ; and g;;, for example, is based on averaged states

Vpi-1jUi-1jt ViU VPi-1,jVi-1; + VpijUij
\/Pi—l,;' + Vi, \/Pi—l,;' + Vi,
(45)

u= , U=

The Roe matrix A = Aj; is simply the Jacobian matrix
f'(q) based on these averaged states:

|
<
<
<|
=
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(Note that the superscripts are exponents here.) We can
write A = RAR™!, where

u+c -1 0
—2cv 0 2c|.
-u+c 1 0

1
-1 =
R 2c

The waves required for the second-orde