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In one space dimension the standard conservation law
has the formA class of high resolution multidimensional wave-propagation

algorithms is described for general time-dependent hyperbolic sys-
tems. The methods are based on solving Riemann problems and qt 1 f(q)x 5 0, (1)
applying limiter functions to the resulting waves, which are then
propagated in a multidimensional manner. For nonlinear systems

where q [ Rm is the vector of conserved quantities. Hereof conservation laws the methods are conservative and yield good
shock resolution. The methods are generalized to hyperbolic sys- we also consider the more general variable-coefficient qua-
tems that are not in conservation form and to problems that include silinear form
a ‘‘capacity function.’’ Several examples are included for gas dynam-
ics, acoustics in a heterogeneous medium, and advection in a stra-

qt 1 A(q, x, t)qx 5 0, (2)tified flow on curvilinear grids. The software package CLAWPACK im-
plements these algorithms in Fortran and is freely available on the
Web. One and two space dimensions are discussed here, although and the methods are formulated in a general manner that
the algorithms and software have also been extended to three also allows their application to hyperbolic systems that
dimensions. Q 1997 Academic Press

are not in conservation form, e.g., the variable-coefficient
linear systems of equations for acoustic or elastic wave
propagation in a heterogeneous medium.1. INTRODUCTION

The methods are based on solving Riemann problems
for the wave structure and then introducing a fluctuationA new class of wave-propagation methods has been de-
splitting technique that generalizes the notion of flux-differ-veloped for solving multidimensional hyperbolic systems
ence splitting from conservation laws. The left-going andof partial differential equations, which includes (but is not
right-going fluctuations capture the net effect of all left-limited to) nonlinear systems of conservation laws. These
going and right-going waves, and these fluctuations aremethods are based on solving Riemann problems for waves
then split in the transverse direction in the generalizationthat define both first-order updates to cell averages and
to more space dimensions.also second-order corrections. These correction terms are

A further generalization is obtained by using capacity-modified by limiter functions to obtain high resolution
form differencing, which allows application to problemsresults. In one dimension this follows standard techniques
such as flow in a porous medium with variable porositydeveloped over the past two decades for nonlinear conser-
[2], or in a stratified flow with variable density (Sectionvation laws, particularly the Euler equations of gas dy-
3.9). This form also simplifies application on curvilinearnamics.
grids (Section 3.10).The methods are extended to two and three space

These methods have been implemented in the softwaredimensions by a natural wave-propagation approach that
package CLAWPACK (conservation laws package), a collec-captures the cross-derivative terms needed for second-
tion of Fortran routines freely available from netlib [28].order accuracy while allowing the use of simple one-dimen-
To browse through this package on the Web, the URL issional limiters with good effect. Moreover, the methods

are stable in general for Courant numbers up to 1, where
http://www.amath.washington.edu/prjl/clawpack.htmlthe Courant number is measured relative to the maximum

wave speed in any direction. This is an improvement over
the stability bounds of the standard multidimensional Lax– This package includes numerous examples for a variety of
Wendroff method, for example. Stability is discussed in different hyperbolic systems of equations, including most

of the examples in this paper. A primary motivation forSection 3.7.
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this work was to make the sophisticated high-resolution given in Section 5. A variety of other approaches to multidi-
mensional methods have also been proposed. A few exam-methods developed largely in the gas dynamics community

available to a wider range of users, and it is hoped that ples can be found in [15–19, 22, 50, 52, 57].
In the context of advection, an overview of related meth-this will be useful to both students and researchers in many

applications areas. The extensions discussed in this paper ods is given in [35]. That paper also describes the wave-
propagation algorithms developed here in a relatively sim-were motivated by specific applications problems, and a

variety of other applications with sample numerical results ple context, where the algorithms can be more easily under-
stood geometrically.can be found in the software and User Notes [29]. The

software is described very briefly in Section 4, but few
implementation details of CLAWPACK will be discussed 2. ONE SPACE DIMENSION
here. These are provided in the CLAWPACK documentation

The algorithms developed here are based on solvingand in the User Notes [29]. An overview of the package
Riemann problems at the interface between grid cells. Wewas given in [34] which describes much of the philosophy,
first consider the standard conservation law (1) and brieflyalthough many of the implementation details presented
review the definition of Godunov’s method, writing it inthere are now out of date.
wave-propagation and flux-difference splitting forms thatThe present paper contains a detailed discussion only
will then be generalized to the quasi-linear system (2).of the one- and two-dimensional methods. Extension to
Extension to high resolution second-order methods usingthree space dimensions has been carried out, as well, in
limiters will be discussed in Section 2.4.joint work with Jan Olav Langseth and will soon be avail-

able in CLAWPACK. Details are discussed in [23, 24].
2.1. Conservation LawsRecently CLAWPACK has been combined with the adap-

tive mesh refinement code of Marsha Berger [4, 5, 8–10]. The Riemann problem for (1) consists of this conserva-
This yields a very general adaptive refinement package tion law together with piecewise constant initial data
that has all of the features of the algorithms presented
in this paper, e.g., the ability to handle nonconservative
hyperbolic equations, capacity form differencing, and ex- q(x, 0) 5 q0 (x) 5Hql if x , 0

qr if x . 0.
(3)

tensions to curvilinear grids. The details of this implemen-
tation are presented elsewhere [11]. This AMRCLAW soft-
ware is also freely available [12]. See With suitable restrictions on f, the solution is a similarity

solution q(x, t) 5 Q(x/t) which consists of a set of waves
http://www.amath.washington.edu/prjl/amrclaw moving at constant speeds [14, 25].

For the second-order corrections discussed in Section
for details and some sample results. 2.4, we will need to assume that in fact qr 2 ql can be

While the multidimensional wave-propagation algo- decomposed as
rithms proposed here are somewhat different from multidi-
mensional algorithms in the literature, there are many simi-
larities with other approaches, at least in the case of a qr 2 ql 5 O

Mw

p51
W p, (4)

conservation law in standard form. In particular the basic
idea of obtaining ‘‘high-resolution’’ methods based on

where W p [ Rm is the jump across the pth wave, Mw issome form of slope limiter or flux limiter has a long history
the number of waves, and each wave has an associatedof development. Many references, along with an overview
wave speed lp [ R. This requires that all waves be disconti-of the one-dimensional theory, can be found in [32].
nuities, i.e., no rarefaction waves. For nonlinear systemsRadvogin [41] has also developed multidimensional up-
such as the Euler equations we assume an approximatewinding schemes that are based on splitting the coefficient
Riemann solver such as Roe’s solver [42] (see Section 3.6)matrices as in Eq. (38), which is the basis of the multidimen-
is used to produce this.sional methods developed here. These methods are quite

The first-order Godunov method is implemented in asimilar for the case of constant coefficient linear systems,
form that does not require these waves explicitly, however.although the limiters are applied differently. For nonlinear
Instead it requires a flux-difference splitting, which is aproblems Radvogin’s approach is based on a flux-vector
decomposition of f (qr ) 2 f (ql ) into a left-going flux differ-splitting, whereas the wave-propagation algorithms are
ence, denoted symbolically by A 2Dq , and a right-goingbased on flux-difference splittings or generalizations.
flux difference, denoted by A 1Dq , with the property thatAnother class of similar methods is exemplified by the

method of Colella [13] (see also [3, 47, 59]). A comparison
of the wave-propagation methods with these methods is A 2Dq 1 A 1Dq 5 f (qr ) 2 f (ql ). (5)



WAVE PROPAGATION ALGORITHMS FOR HYPERBOLIC SYSTEMS 329

FIG. 1. Waves, interface values, and flux differences for Godunov’s method.

For the classical Godunov method, let q* 5 Q(0) be the method is obtained by constructing a solution over the
time step as indicated in the figure. With piecewise constantvalue along x/t 5 0 in the solution to the Riemann prob-

lem. Then initial data we can solve Riemann problems at each inter-
face and piece these together to get the global solution for
a sufficiently small time step. Averaging this solution overA 2Dq 5 f(q*) 2 f(ql )

(6) the ith grid cell at time tn11 gives the new cell average
A 1Dq 5 f(qr ) 2 f(q*).

q n11
i . Below we generally drop the superscript on qn

i and
denote qn11

i by qi .If a wave decomposition of the form (4) is available, one
By integrating the conservation law over this grid cell

could alternatively set
one can then show by a standard argument (e.g., [32]) that
the new cell average is given by

A 2Dq 5 O
p

(lp )2W p

(7)

qi 5 qi 2
Dt
Dx

( f(q*i11 ) 2 f(q*i )), (11)A 1Dq 5 O
p

(lp )1W p,

where q*i is the intermediate state arising in solving thewhere l1 5 max(l, 0) and l2 5 min(l, 0). In the case
Riemann problem at xi . This numerical method is clearlywhere a Roe solver is used for a nonlinear system, (7) may
in standard conservation form and is typically stable fornot satisfy the entropy condition unless an ‘‘entropy fix’’
Courant numbers up to 1.is included in the definition of A 2Dq and A 1Dq [21, 32, 45].

For purposes of generalizing the methods, however, weThe notation A 2Dq and A 1Dq is motivated by the case
will rewrite Godunov’s method in a different form. Manip-of a constant coefficient linear system
ulating (11) with the help of the expressions (6), we can
deriveqt 1 Aqx 5 0, (8)

in which case qi 5 qi 2
Dt
Dx

(A 1Dqi 1 A 2Dqi11 ). (12)

A 2Dq 5 A 2(qr 2 ql ), A 1Dq 5 A 1(qr 2 ql ), (9)
Here A 1Dqi is the right-going flux difference from solving
the Riemann problem between qi21 and qi . From the inter-where the matrices A6 are defined as
pretation (7) we see that this models the combined effect
on the cell average qi of all waves entering the cell fromA6 5 RL6R21. (10)
the left edge. Similarly, A 2Dqi11 is the left-going flux differ-
ence from the Riemann problem between qi and qi11 , andHere R 5 [r 1ur 2u? ? ?ur m ] is the matrix of right eigenvectors

(with some choice of normalization), L 5 diag(l1, ..., lm ) models the combined effect of all waves entering the cell
from the right (see Fig. 1).is the eigenvalue matrix, and L6 5 diag((l1 )6, ..., (lm )6).

Note that in this case W p 5 a pr p, where a 5 R21Dq. The form (12) will be used in general. For a system of
conservation laws, this method is conservative and consis-Now consider a one-dimensional grid with cell average

qn
i in the grid cell [xi , xi11 ] at time tn (see Fig. 1). Godunov’s tent for any flux-difference splitting that satisfies (5).
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2.2. Nonconservative Systems From this we obtain a linear system which can be solved
for the wave strengths a1

i and a2
i , yielding

The extension to more general hyperbolic systems is best
illustrated by a simple example. Consider the equations for

a1 5 (2Dq1/ri 1 ci Dq2 )/(ci21/ri 1 ci/ri21 )acoustics in a heterogeneous medium. The equations can
be written as a first-order variable coefficient linear system a2 5 (2Dq1/ri21 1 ci21 Dq2 )/(ci21/ri 1 ci/ri21 ).

pt 1 K(x)ux 5 0
(13) We then define the ‘‘flux-difference splitting’’ by

r(x)ut 1 px 5 0,

A 2Dqi 5 l1
i W 1

i
(14)where the unknowns are the pressure perturbation p(x, t)

A 1Dqi 5 l2
i W 2

i .and the velocity u(x, t). The variable coefficients are the
density r(x) and bulk modulus of elasticity K(x). We can
write this system as Note that this is not really the splitting of any flux differ-

ence in this nonconservative problem. In particular,
qt 1 A(x)qx 5 0,

A 2Dqi 1 A 1Dqi ? Ai qi 2 Ai21 qi21 .
where

Nonetheless, Godunov’s method, with the same physical
interpretation of solving Riemann problems based onq 5Fp

u
G, A 5F 0 K(x)

1/r(x) 0
G .

piecewise constant initial data and then computing cell
averages to define qi , can be implemented in the form (12)
and is effective for this problem. (Numerical results areWe assume that the ith cell has material parameters ri and
presented in Section 2.6 after introducing the second-or-Ki and set
der corrections.)

2.3. Fluctuation SplittingAi 5F 0 Ki

1/ri 0
G .

It seems desirable to have a term for A 2Dq and A 1Dq
other than ‘‘flux-difference splitting’’ in the general case

The sound speed in the ith cell is ci 5 ÏKi /ri . The solution where there may be no flux function. In early work of Roe
to the Riemann problem between states qi21 in cell i 2 1 (e.g., [43, 44]) the term fluctuation was often used for flux
and qi in cell i consists of two waves. The left-going wave differences and was even used in the context of nonconser-
moves into cell i 2 1 with velocity l1

i 5 2ci21 and the jump vative formulations of the Euler equations in [44]. I pro-
across this wave must be a scalar multiple of the eigenvec- pose reviving this term with a specific meaning that general-
tor r 1

i21 of the matrix Ai21 , izes the notion of a flux difference. For a general Riemann
problem we can define a fluctuation ADq which will be
split into a left-going fluctuation A 2Dq and a right-going

W 1
i 5 a 1

i F2ci21

1/ri21
G . fluctuation A 1Dq. The definition used here will be different

from Roe’s use of the term in two space dimensions, how-
ever. Roe viewed the fluctuation as measuring the devia-

The right-going wave moves into cell i with velocity tion from equilibrium in a steady-state problem, and so
l2

i 5 ci and the jump across this wave is a multiple of r 2
i , in two space dimensions he defined the fluctuation as an

approximation to fx 1 gy over the grid cell. Here the fluctu-
ation will always refer to the total effect on the solution

W 2
i 5 a2

i F ci

1/ri
G , due to waves arising from a one-dimensional Riemann

problem at a cell edge, in any number of space dimensions,
and will be associated with a Riemann problem rather than

for some scalar a2
i . The state between the two waves must a cell.

be continuous across the interface (the proper physical In the acoustics example given above, we first defined
jump condition) and so waves W p with speeds lp for each Riemann problem, and

the fluctuation splitting was then naturally defined by (14).
qi21 1 W 1

i 5 qi 2 W 2
i . This generalizes to (7) for a problem with Mw waves in
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the solution to the Riemann problem. The total fluctuation Note that the corrections are in a ‘‘flux-differencing’’ form,
and in fact this form can be used even in the case ofADq can then be defined a posteriori as
nonconservative equations. The correction flux F̃i is de-
fined in terms of the waves W p

i and speeds lp
i arising from

the ith Riemann problem, and it is only at this point thatADq 5 A 2Dq 1 A 1Dq 5 O
Mw

p51
lp

i W p
i .

the individual waves are needed, rather than the lumped
fluctuations A 6Dq. A decomposition into waves allows

Note that this has the physical interpretation of measuring us to apply limiter functions to reduce oscillations near
the total effect of waves arising from this Riemann problem discontinuities by comparing the pth wave to the pth wave
on the total integral of q (per unit time). arising from the neighboring Riemann problem. This is

Alternatively, we can define the fluctuation without ref- discussed below.
erence to the waves if we assume the Riemann problem In the absence of limiters, the second-order corrections
between states ql and qr has a similarity solution of the take the form
form Q(x/t), as it must have whenever we can define waves
propagating at constant speeds, which is a basic assumption
for the methods developed here. (For a variable coefficient F̃i 5

1
2 O

Mw

p51
ulp

i u S1 2
Dt
Dx

ulp
i uDW p

i . (19)
problem such as the acoustics problem above, this requires
using piecewise constant coefficients in the definition of
the Riemann problem. This is consistent with the accuracy This is a standard expression; see, e.g., [32, 58]. It can be
that can be expected for such problems, even with second- interpreted as arising from propagating a piecewise linear
order corrections added to the algorithm as discussed in the ‘‘correction wave’’ as described in [30, 31, 35].
next section.) Then we can define the fluctuation associated For the linear system (8), the method (18) with fluctua-
with this Riemann problem by tions (9) and corrections (19) reduces to the standard Lax–

Wendroff method. For an autonomous nonlinear system
of conservation laws of the form qt 1 f(q)x 5 0, these

ADq 5 Ey

2y
(Q(j) 2 q0 (j)) dj , (15) correction terms give full second-order accuracy and the

method is a variant of Lax–Wendroff in this case.
For nonautonomous problems of the form qt 1where q0 is defined by (3). Because of the finite propagation

f(q, x)x 5 0 or qt 1 A(q, x)qx 5 0 (e.g., the acousticsspeeds, this integrand is nonzero over a bounded region
problem above), this form of the corrections does not giveand the integral is finite. The fluctuation splitting is then
second-order accuracy formally. However, it does elimi-given by
nate the dominant diffusive term in the first-order error
and gives results that are as well resolved as we would

A 2Dq 5 E0

2y
(Q(j) 2 q0 (j)) dj normally expect from a high-resolution method. The re-

maining first-order error corresponds to a slight shift in
5 E0

2y
(Q(j) 2 ql ) dj, (16) the location of the solution, rather than in the excessive

smearing seen with the first-order upwind method, for ex-
ample.A 1Dq 5 Ey

0
(Q(j) 2 q0 (j)) dj

To see this, consider the advection equation

5 Ey

0
(Q(j) 2 qr ) dj . (17)

qt 1 u(x)qx 5 0 (20)

Clearly these are exactly the integrals needed in defining with u(x) a given smooth function. Taylor expansion
Godunov’s method via integration over the grid cell at shows that
time tn11 , and again the method takes the form (12).

q(x, t 1 Dt) 5 q(x, t) 1 Dt qt (x, t) 1 As(Dt)2qtt (x, t) 1 ? ? ?2.4. Second-Order Corrections
5 q 2 Dt u(x)qx 1 As(Dt)2u(x)[u(x)qx]x 1 ? ? ?.Godunov’s method is extended to a high resolution

method by adding an additional term. The form of the
extended method is For second-order accuracy we need to match the first three

terms, which can be rewritten as

qi 5 qi 2
Dt
Dx

(A 1Dqi 1 A 2Dqi11 ) 2
Dt
Dx

(F̃i11 2 F̃i ). (18) q 2 Dt u(x)qx 1 As(Dt)2[u2(x)qxx 1 u(x)u9(x)qx ]. (21)
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FIG. 2. Solution to qt 1 xqx 5 0 with first-order upwind method (on left) and using ‘‘second-order’’ correction terms (on right). The dashed
line shows the initial data.

The method proposed here can be applied to this problem In other words, there is an O(Dt) error in the advection
speed. The resulting error is much less dramatic than withby setting
a diffusive first-order method. This is illustrated in Fig. 2,
where the equation qt 1 xqx 5 0 has been solved bothW 1

i 5 qi 2 qi21 , l1
i 5 ui21/2 ,

with and without the ‘‘second-order’’ correction terms.
A 2Dqi 5 u2

i21/2 (qi 2 qi21 ), The equations are solved on a grid with Dx 5 0.04 and
Dt 5 0.009.A 1Dqi 5 u1

i21/2 (qi 2 qi21 ).
Although it would be possible to modify the algorithm

to obtain formal second-order accuracy on smooth solu-
Suppose, for example, that u . 0 everywhere. Then the tions, it would no longer be in the unified framework that
above method, with ‘‘second-order’’ corrections, can be allows the limiters introduced in the next section to be
arranged to yield applied in the standard manner on a wider variety of prob-

lems. The interest here is in problems where the use of
such limiters is important (e.g., discontinuous solutions)qn11

i 5 qn
i 2

Dt
2Dx

(ui21/2 (qn
i 2 qn

i21 ) 1 ui11/2 (qn
i11 2 qn

i ))
and, once the limiters are introduced, formal second-order
accuracy is typically lost anyway. The extension to nonau-
tonomous problems introduced here gives algorithms that1

1
2 SDt

DxD2

(u2
i11/2 (qn

i11 2 qn
i ) 2 u2

i21/2 (qn
i 2 qn

i21 )).
work essentially as well on such problems as on classical
autonomous conservation laws. For further illustration of

This is clearly a second-order accurate approximation to this, see the example in Section 2.6.

q 2 Dtu(x)qx 1 As(Dt)2[u2(x)qx]x , 2.5. Wave Limiters

To reduce spurious oscillations and obtain a high resolu-which can be rewritten as
tion method it is necessary to introduce limiter functions
that modify (19) near discontinuities. Depending on the

q 2 Dtu(x)qx 1 As(Dt)2[u2(x)qxx 1 2u(x)u9(x)qx]. interpretation these are generally called flux limiters or
slope limiters. (See, e.g., [20, 58, 60].) In the present context

Comparing this with (21) shows that we have correctly these could also be called wave limiters, as it is the magni-
modeled the u2qxx term (failing to do so results in numer- tude of the wave W p

i in (19) that will be modified.
ical diffusion as in upwind), but we have an error of We replace each W p

i by a limited version W̃ p
i , which

As(Dt)2u(x)u9(x)qx . This is equivalent to replacing u(x)qx in is obtained by comparing W p
i to the corresponding p-

the second term by wave W p
i21 or W p

i11 arising from the solution to the Rie-
mann problem at the adjacent grid point to the left or
right. The direction is chosen to be the upwind direc-(1 2 AsDtu9(x))u(x)qx P u(x 2 AsDtu(x))qx .
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tion; i.e., we look to the left if lp
i . 0 and to the right if where ? represents inner product. Note that this reduces

to (22) for a linear system.lp
i , 0.
In the case of the linear system (8) we have A simpler approach would be to apply a scalar limiter

componentwise to each element of the vector W p
i and the

corresponding element of W p
i21 . This also reduces to (22)W p

i 5 a p
i r p,

for a linear system but typically would not preserve the
direction of W p

i in a nonlinear problem. It is not clear atwhere ap
i is a scalar and the vector r p is independent of i.

this point how important this preservation is. (One compar-Then we can simply apply the limiter to the scalars ap
i ,

ison is presented in [33].)setting W̃ p
i 5 ã p

i r p, where ã p
i is the limited wave strength.

Another approach is taken in recent work of Liu andThis is calculated by applying some limiter function f to
Lax [26, 40]. They use the Roe matrix Ai that determinesthe ratio of this wave strength to the strength of the neigh-
W p

i 5 a p
i r p

i , via an eigen-decomposition of Dqi 5 qi 2boring wave in the same family, looking in the upwind
qi21 , to also decompose Dqi21 5 os b sr s

i . Then the limiterdirection,
is applied to a p

i and b p to obtain ã p
i . This requires addi-

tional work but has the advantage that their resulting
ã p

i 5 f(u p
i )a p

i , scheme can be proved to be a positive scheme in the sense
described in [40].

After defining the limited waves W̃ p
i by one of the ap-where

proaches above, the F̃i used in (18) are given by (19) with
W p

i replaced by W̃ p
i .

u p
i 5

a p
I

a p
i

with I 5Hi 2 1 if lp
i . 0

i 1 1 if lp
i # 0.

(22)
2.6. Numerical Results for Acoustics

As an example to demonstrate that this generalizationThe ratio of wave strengths u p
i is used to measure the

of one-dimensional high resolution methods to nonconser-smoothness of the solution. Where the solution is smooth,
vative systems is effective, consider the acoustics equationsthis can be expected to be near 1. Near discontinuities in
(13) in the extreme case where the sound speed is discon-the pth family, u p

i may be far from 1. A wide variety of
tinuous at an interface between two media. We take K ;limiter functions have been studied. Some standard limiters
1 andused here are

minmod: f(u) 5 max(0, min(1, u))

r 5H1 if x , 0.6

4 if x . 0.6,
superbee: f(u) 5 max(0, min(1, 2u), min(2, u))

monotonized centered
(MC): f(u) 5 max(0, min((1 1 u)/2, 2, 2u)).

giving a jump from c 5 1 on the left to c 5 0.5 on the
right. As initial data we take a hump in pressure in theFor variable coefficient or nonlinear problems the wave
left region and u ; 0. The hump splits into equal left-goingW p

i will not be a scalar multiple of the waves W p
i21 or

and right-going pieces and the right-going portion hits theW p
i11 from the neighboring Riemann problem, and one

interface, giving transmitted and reflected waves. Themust determine the manner in which these vectors are
transmitted wave is narrower due to the lower sound speed.going to be compared and modified in applying the limiter.

As an initial hump we useFor concreteness assume lp
i . 0 so that in the pth family

we compare W p
i to W p

i21 . The approach used here (which
is currently the default of CLAWPACK) is to project the
neighboring wave W p

i21 onto the vector W p
i and compare

p(x, 0) 5HpÏ1 2 ((x 2 x0 )/x)2 if ux 2 x0 u , x,

0 otherwise,the length of this projected vector with the length of
W p

i itself, modifying the length of W p
i as needed, but

preserving its direction. This is accomplished by setting
with x0 5 0.4, x 5 0.075, and p 5 0.2. This is a half ellipse
of the type used by Zalesak [62] in his comparison of

u p
i 5

W p
i21 ? W p

i

W p
i ? W p

i
advection algorithms. This is a nice test because it has an
infinite slope at the corners as well as a region of

W̃ p
i 5 f(u p

i )W p
i , smoothness.
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FIG. 3. Computed Results for One-Dimensional Acoustics with a Discontinuity in Sound Speed at x 5 0.6.

Figure 3 shows the true solution and computed results or undershoots, even as the wave passes through the inter-
face. In these tests the minmod limiter was used.for the pressure at six different times on a grid with 200

grid points, Dx 5 0.005 and Dt 5 0.004, corresponding to
2.7. Capacity-Form Differencinga Courant number of 0.8 in the left medium, and 0.4 in

the right. In many applications it is useful to allow a generalized
Note that the left-going hump leaves the domain cleanly. form of the conservation law,

Zero-order extrapolation was used at the boundary, as
k(x)qt 1 f(q)x 5 0, (23)discussed in [29]. It is also clear that there are no overshoots
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in one space dimension, or q̃(j, t) 5 q(X(j), t), then the conservation law can be
rewritten as

k(x, y)qt 1 f(q)x 1 g(q)y 5 0, (24)
X 9(j)q̃t 1 f(q̃)j 5 0

in two dimensions (or similar generalizations of the qua-
and solved on the uniform grid in j-space. In this casesilinear equation (2)).
X 9(j) is the capacity function. Note thatHere k is a given function of space that I will refer to

in general as a capacity function, since it generally repre-
X 9(ji )Dj P xi11 2 xi ,sents, in some sense, the capacity of the medium at each

point to hold the conserved quantity q. (In some applica-
tions k may also vary with time.) In one dimension, the the length of the ith cell in physical space, so again the
corresponding integral form is notion of capacity makes sense.

The ability to handle mapped grids is more interesting in
two space dimensions, in which case the capacity function is­

­t
Eb

a
q(x, t)k(x) dx 5 f(q(a, t)) 2 f(q(b, t)). the Jacobian of the transformation. General curvilinear

grids in two dimensions are discussed in Section 3.10.

Note that this integral can be viewed as the integral of q In each of the examples above, it is kq that is really the
against the measure k(x) dx. conserved quantity although q may be of more physical

significance. One approach to solving (23) would be toEXAMPLE 2.7.1. In porous media flow k could represent
manipulate it to the formthe porosity, the fraction of the volume that is available

for the fluid to occupy. Consider, for example, a porous
medium in which the porosity and permeability vary only qt 1 ( f(q)/k)x 5 Sk9

k
D f(q), (27)

in one direction, with x, say, and suppose we consider flow
in the x-direction, with zero velocity in the other directions.
If the porous medium is saturated with an incompressible which is a standard conservation law with a source term.
fluid, then we have the advection equation Solving in this form may not guarantee conservation of

kq, however, and has the additional problem of introducing
an unnecessary source term.k(x)qt 1 u0qx 5 0, (25)

Another approach might be to define the new variable
c(x, t) 5 k(x)q(x, t) and then to solve the conservation lawwhere u0 is constant for an incompressible fluid. In this

case, k(x) dx is the infinitesmal volume element available
ct 1 f(c/k)x 5 0to the fluid at point x. The advection equation (25) would

also be obtained by modeling incompressible flow in a
for c, dividing by k at the end to recover q. This would‘‘quasi one-dimensional’’ pipe with variable cross-sectional
guarantee conservation of kq but often has other difficult-area k(x) and a velocity that is assumed to vary only with x.
ies such as the inability to preserve uniform states in q.In two space dimensions we would have an equation of

Instead of reducing Eq. (23) to a more familiar conserva-the form
tion law by one of the above devices, it is preferable to
apply capacity-form differencing,k(x, y)qt 1 u(x, y)qx 1 v(x, y)qy 5 0, (26)

where ux 1 vy 5 0. Applications of these algorithms to qi 5 qi 2
Dt

ki Dx
(A 1Dqi 1 A 2Dqi11 ) 2

Dt
ki Dx

(F̃i11 2 F̃i ),
saturated groundwater flow are discussed in [2, 29]. See

(28)also [1]. See Example 3.9.1 for a related example of density-
stratified flow.

where ki is the capacity of the ith cell. This is a simple
EXAMPLE 2.7.2. Suppose we wish to solve the equation extension of (18) which ensures that o ki qi is conserved

qt 1 f(q)x 5 0 on a stretched grid, with grid points (except for fluxes through the boundaries) and yet allows
the Riemann solution to be computed based on q as in

xi 5 X(ji ), the case k ; 1. In particular, if qi ; constant, then typically
the fluctuations and also the waves used to define the F̃
are all zero, so that qi 5 qi and constant data is preserved.where X(j) is some smooth grid mapping function and

ji 5 iDj is a uniform computational grid. If we let The formulas for the second-order correction terms also
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need to be modified in a simple manner to take into account to a standard conservation law (30), but, again, it is de-
scribed (and implemented) in a more general form whichthe function k. The second-order correction term (19) is

replaced by allows easier application to other hyperbolic problems that
are not in conservation form. The method is imple-
mented as

F̃i 5
1
2 O

Mw

p
ulp

i u S1 2
Dt

ki21/2Dx
ulp

i uD W̃ p
i , (29)

qij 5 qij 1 Dup
ij 2

Dt
Dx

(F̃i11, j 2 F̃ij )

(33)where ki21/2 is some average value of k; e.g., ki21/2 5
As(ki21 1 ki ).

2
Dt
Dy

(G̃i, j11 2 G̃ij ),Note that in the case of a mapped grid, Example 2.7.2,
ki21/2Dj is roughly the distance between the centers of cells
i 2 1 and i in physical space, and so op W p

i /(ki21/2 Dj) is where Dup
ij is the update for a first-order upwind (donor-

approximately qx . cell or Godunov) method, of the form
This form of differencing is frequently used in practice

in various contexts, but it is not usually presented in the
Dup

ij 5
Dt
Dx

(A 2Dqi11, j 1 A 1Dqij )

(34)
general framework used here, to the best of my knowledge.
It is a simple yet powerful generalization that allows appli-
cation of finite volume methods to a wider variety of prob- 2

Dt
Dy

(B 2Dqi, j11 1 B 1Dqij ).
lems and should be better known.

Sample calculations with capacity-form differencing are
The A 6Dq and B 6Dq terms represent fluctuations arisinggiven for a more interesting two-dimensional problem in
from Riemann problems in the x- and y-directions, respec-Sections 3.9 and 3.10.
tively. The F̃ and G̃ fluxes are used to perform second-
order corrections and, also, corrections for cross-derivative3. TWO SPACE DIMENSIONS
terms that arise in two dimensions which did not appear
in one dimension.In two space dimensions we have the standard conserva-

The descriptions below will focus primarily on the solu-tion law
tion of a Riemann problem in the x-direction, at an inter-
face between cells (i 2 1, j) and (i, j), and the manner inqt 1 f(q)x 1 g(q)y 5 0. (30)
which the waves from this Riemann problem contribute
to Dup

ij , F̃ij , and nearby G̃ fluxes. An analogous procedureWe first consider the extension of the wave-propagation
is followed at each interface in the y-direction betweenalgorithm to multiple dimensions for this case and then
cells (i, j 2 1) and (i, j), with a switch in the roles of F andextend to nonconservative hyperbolic systems in Section
G and in A Dq and BDq. The symbol Dqij below thus3.8. Capacity functions can also be introduced, as in one
refers to qij 2 qi21, j , the difference in the x-direction.dimension (see Section 3.9).

We discretize using a Cartesian grid with uniform spac-
3.1. First-Order Godunoving Dx and Dy . The cell average over cell (i, j) is denoted

by qij . The standard flux-differencing form of a conserva- We begin by solving a one-dimensional Riemann prob-
tive finite volume method is lem normal to each cell interface, exactly as in one space

dimension. We solve the one-dimensional Riemann prob-
lem qt 1 f(q)x 5 0 with data qi21, j and qij . This results inqij 5 qij 2

Dt
Dx

(Fi11, j 2 Fij ) 2
Dt
Dy

(Gi, j11 2 Gij ), (31)
a set of Mw waves and speeds, along with a splitting of the
flux difference f(qij) 2 f (qi21, j) into two pieces A 2Dqij and
A 1Dqij moving to the left and right, respectively.where Fij is the numerical flux at the left edge of cell (i, j)

A basic first-order Godunov method is thus defined byand Gij is the flux below this cell, e.g.,
simple extension from one-dimension via (33) and (34)
with F̃ 5 G̃ 5 0. This method is typically stable only for

Fij P
1

DyDt
Etn11

tn
Eyj11

yj

f(q(xi , y, t)) dy dt, (32) Courant numbers up to As (see Section 3.7).

3.2. Transverse Propagation
where (xi , yj ) is the coordinate of the lower left corner of
cell (i, j). The Godunov method described above is based on prop-

agating waves normal to each cell interface. In reality theThe multidimensional wave propagation algorithm de-
veloped here could be written in this form when applied waves should propagate in a multidimensional manner and
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FIG. 4. (a) Transverse propagation in the advection equation. (b) The four transverse flux differences for a general system of equations.

affect other cell averages besides those adjacent to the (which is the entire fluctuation in this scalar case) and that
this should be propagated upward by the vertical velocityinterface. This is accomplished by splitting each fluctuation

A *Dqij for p 5 1 and 2 into two transverse fluctuations v. The quantity vu(qij 2 qi21, j), the product of this fluctua-
tion and the vertical velocity, gives the up-going trans-which will be called B 1A *Dqij (the up-going transverse

fluctuation) and B 2A *Dqij (the down-going transverse verse fluctuation.
For a system of equations we typically will have both afluctuation). The notation is motivated by the linear system

case mentioned further below. left-going fluctuation A 2Dqij and a right-going fluctuation
A 1Dqij . Each of these will be split into an up-going pieceFigure 4a shows an example for the advection equation
and a down-going piece, so there will be four transverse
fluctuations modifying the four neighboring G fluxes asqt 1 uqx 1 vqy 5 0 (35)
indicated in Fig. 4b.

Again the notation B 6A *Dqij is motivated by the casewith velocities u, v . 0, in which case the single wave
should propagate in the direction (u, v). There is a trian- of a linear system of equations
gular portion of the wave which should move into cell
(i, j 1 1), rather than cell (i, j) in this figure. This can be

qt 1 Aqx 1 Bqy 5 0 (36)accomplished by modifying the flux Gi, j11 at the interface
between these two cells by the appropriate amount,

in which case the matrices B6 are defined in an analogous
G̃i, j11 :5 G̃i, j11 2

1
2

Dt
Dx

uv(qij 2 qi21, j). way to A6, based on the positive and negative eigenvalues
of B. The transverse fluctuations are then given by

This is discussed in much greater detail for the advection
equation in [35].

B 6A *Dqij 5 B6A*(qij 2 qi21, j),Introducing transverse propagation has two important
effects. First, it provides the cross-derivative terms qxy and
qyx required in a second-order accurate algorithm. Once

where p 5 1 or 2.the transverse flux differences have been included, second-
In general, the transverse fluctuations are used to modifyorder accuracy is easily achieved by including the second-

the four neighboring fluxes according toderivative terms in each coordinate direction (qxx and qyy )
using the same correction that is applied in one space
dimension. See Section 3.3 for these terms, [35] for an
analysis of the trunctation error in the case of linear advec- G̃i, j11 :5 G̃i, j11 2

1
2

Dt
Dx

B 1A 1Dqij
tion, and [33] for some discussion of systems. Second, the
transverse correction terms improve the stability limit and G̃ij :5 G̃i, j 2

1
2

Dt
Dx

B 2A 1Dqij
(37)allow full Courant number 1, relative to the maximum

wave speed in any direction. This is discussed in Section 3.7. G̃i21, j11 :5 G̃i21, j11 2
1
2

Dt
Dx

B 1A 2Dqij
To generalize the notion of transverse propagation to

a system of equations, we begin by observing that, for G̃i21, j :5 G̃i21, j 2
1
2

Dt
Dx

B 2A 2Dqij .advection, u(qij 2 qi21, j) is the right-going fluctuation
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For a linear system qt 1 Aqx 1 Bqy 5 0, the sum of all Examples are given below to illustrate these transverse
splittings more concretely. The two-dimensional acousticsthe transverse fluctuations is
equations are discussed in Section 3.5 and the acoustics
equations with varying material parameters are discussed(B1A1 1 B2A1 1 B1A2 1 B2A2)Dq 5 BADq. (38)
in Example 3.8.1. In the latter case the corrections
due to transverse propagation can still be written in flux-Since Dq represents a difference in the x-direction, and
differencing form, even though the system is not conser-the G-fluxes are then differenced in the y-direction in up-
vative.dating q, the modification (37) results in an approximation

For a nonlinear system of equations, we must still specifyto AsDtBAqxy , which is one of the cross-derivative terms
how the fluctuations A *Dq(p 5 1 or 2) defined by solvingneeded in order to achieve second-order accuracy. The
the Riemann problem normal to each interface will be splitsplitting of this term into four pieces based on the signs
up into transverse fluctuations. This is typically done byof the eigenvalues gives an upwinding of these terms that
splitting the vector A *Dq into eigenvectors of an approxi-substantially improves stability over the centered Lax–
mate Jacobian matrix in the transverse direction. If theWendroff approach, which can be shown to correspond to
Roe approximation is used, for example, then we have anusing AfBADq in each of the updates in (37) instead of the
approximate Jacobian A P f 9(q) defined at the interfacesplitting (38). Radvogin [41] defines methods for linear
between cells (i 2 1, j) and (i, j) that is based on averagedsystems that are very similar.
values between these two states. The same averaged valueFor a linear system of equations, in the special case
can be used to define an approximate Jacobian B P g9(q)where A and B are simultaneously diagonalizable (i.e.,
at this interface. (See Example 3.6.1 for a concrete exam-have the same eigenvectors), the system can be trans-
ple.) The eigenvectors ws of B can be used to split A *Dqijformed to a set of m independent scalar advection equa-
just as in the linear case,tions and the modifications (37) are equivalent to applying

the advection algorithm to each of these independent equa-
tions. A *Dqij 5 O

s
bsws.

Even when A and B are not simultaneously diagonaliz-
able, these transverse fluctuations can also be interpreted
in terms of multidimensional wave propagation. The flux

We then definedifference A 1Dq, for example, is the sum of lpW p over
all right-going waves. If we now decompose each wave
W p as a linear combination of the eigenvectors of B, say B 2A *Dqij 5 O

s
(es)2b sws, B 1A *Dqij 5 O

s
(es)1bsws,

W p 5 Om
s51

b psws,
where es are the corresponding eigenvalues of B. Note
that, as for the linear system, this splitting can also be
written aswhere Bws 5 esws, then the subwave b psws should be

propagated upwards or downwards with speed es, de-
pending on whether es is positive or negative. The up-

B 2A *Dqij 5 B2(A *Dqij ), B 1A *Dqij 5 B1(A *Dqij),
going fluctuation, for example, is

where, again, B is the approximate Jacobian.O
s

(es )1b psws.
Although still only first-order accurate, the inclusion of

transverse flux differences typically improves stability and
allows Courant numbers up to 1 (see Section 3.7). TheseSumming these over all right-going waves W p for lp . 0
terms are also a necessary component of the second-gives
order accurate method, since they yield the cross deriva-
tive terms that arise in the (Dt)2 term of the Taylor se-O

p
(lp )1 O

s
(es )1b psws 5 O

s
(es )1 SO

p
(lp )1b psD ws ries expansion.

3.3. Second-Order Corrections
and it can be easily verified that this is precisely B1A1Dq.
The other transverse flux differences can be interpreted Once the transverse corrections described above have

been implemented, it is possible to achieve second-ordersimilarly as combinations of waves in the other three direc-
tions. accuracy by simply making one-dimensional flux correc-
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tions analogous to (19). It is at this point that the waves virtually no additional work. This has been used in all the
numerical results presented below.W p

ij and speeds lp
ij computed in solving the Riemann prob-

lem normal to each interface are used. We make the correc-
3.5. Acousticstions

In two space dimensions the acoustics equations for the
pressure perturbation p and velocities u and v can be

F̃ij :5 F̃ij 1
1
2 O

Mw

p
ulp

ij u S1 2
Dt
Dx

ulp
ij uD W̃ p

ij , (39) written

qt 1 Aqx 1 Bqy 5 0, (40)where W̃ p
ij is a limited version of W p

ij . The limiter is applied
exactly as in one dimension, so W p

ij is compared to
whereW p

i21, j or W p
i11, j , depending on whether lp

ij . 0 or ,0, just
as described in Section 2.4.

This is a potential weak point in the algorithm, since the
limiter does not take into account the behavior of the

q 5 3
p

u

v
4, A 5 3

0 K 0

1/r 0 0

0 0 0
4, B 5 3

0 0 K

0 0 0

1/r 0 0
4.

solution in the transverse direction. A more sophisticated
multidimensional limiting procedure (e.g., [27, 46, 61])
might be able to control oscillations in multidimensional
problems. However, in practice this one-dimensional ap- The algorithm will be described for the x direction. Analo-
proach to limiting seems to work very well for most prob- gous formulas hold for y sweeps with the role of u and
lems and is much simpler to implement and less computa- v switched.
tionally intensive than other approaches. The Riemann solution for qt 1 Aqx 5 0 between states

qi21, j and qij consists of three waves, but one always has
3.4. Transverse Propagation of the speed zero and can be ignored. So we can take Mw 5 2

Second-Order Corrections and only use two waves, a1r 1 with speed l1 5 2c and a2r 2

with speed l2 5 1c. The eigenvectors areThe above method is already second-order accurate (for
smooth solutions), but it is quite easy to also propagate
the second-order corrections in the transverse direction.
This is motivated by ‘‘Method 4’’ in [35] and, while this

r 1 5 3
c

1/r

0
4, r 2 5 3

2c

1/r

0
4. (41)additional correction does not increase the order of accu-

racy, it has been found to improve stability properties and
reduce spurious oscillations in many problems (an example
is given in [35]). The coefficients are the same as in one dimension,

The flux corrections (39) will affect the cell averages
qi21, j and qij in the cells to the left and right of this interface. a1 5 As(2Dq1/c 1 rDq2 ), a2 5 As(Dq1/c 1 rDq2 ). (42)
Hence the transverse propagation of this correction should
affect four G fluxes, those below and above these two cells. Again the fluctuations are
The corrections are split into up-going and down-going
portions in exactly the same manner as A *Dq is split into A 2Dq 5 l1a1r 1, A 1Dq 5 l2a2r 2. (43)
B1A *Dqij and B2A *Dqij . In fact, the algorithm with this
transverse propagation is implemented by simply modi- To obtain the transverse fluctuations we split A *Dqij
fying A *Dq by these second-order corrections before call- into eigenvectors of the matrix B. For the acoustics equa-
ing the routine that splits these vectors into transverse tions these are particularly simple. For example, A 2Dq
fluctuations. The proper modifications are would be split as

A 1Dqij :5 A 1Dqij 2 O
Mw

p
ulp

ij u S1 2
Dt
Dx

ulp
ij uD W̃ p

ij ,

A 2Dq 5 2ca1 3
2c

1/r

0
45 b1 3

2c

0

1/r
41 b2 3

c

0

1/r
41 b3 3

0

1

0
4,

A 2Dqij :5 A 2Dqij 1 O
Mw

p
ulp

ij u S1 2
Dt
Dx

ulp
ij uD W̃ p

ij .

where
Note that the correction term in these updates is exactly the
same as the term that modifies F̃ij in (39), so this requires b 1 5 2ca 1/2, b 2 5 ca 1/2, b 3 5 2ca1/r.
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The three eigenvectors of B displayed above correspond (Note that the superscripts are exponents here.) We can
write A 5 RLR21, whereto eigenvalues e1 5 2c, e2 5 c, e3 5 0, and the third one

plays no role in the transverse propagation. The transverse
fluctuations are then

R 5 3
1 0 1

u 2 c 0 u 1 c

v 1 v
4 , R21 5

1
2c 3

u 1 c 21 0

22cv 0 2c

2u 1 c 1 0
4 .

B 2A 2Dqij 5 2cb 1 3
2c

0

1/r
4 , B 1A 2Dqij 5 cb 2 3

c

0

1/r
4 .

The waves required for the second-order corrections are
thenSome numerical examples for two-dimensional acoustics

(in a heterogeneous material) are given in Section 3.8
below.

W 1
i 5 a1

i 3
1

u 2 c

v
4 , W 2

i 5 a2
i 3

0

0

1
4 , W 3

i 5 a3
i 3

1

u 2 c

v
4 ,3.6. Gas Dynamics

First we summarize the way in which the waves, fluctua-
tions, and transverse fluctuations are computed for the (46)
case of isothermal flow. Numerical results will then be
presented for the full Euler equations. where the wave strengths ai are given by

EXAMPLE 3.6.1. Isothermal flow is governed by a non-
ai 5 R21Dqij . (47)linear system of equations quite similar to the full Euler

equations of compressible flow, but simpler, as it involves
only three equations instead of four and it involves a very The wave speeds are the eigenvalues of A:
simple equation of state, p 5 c2r, where c is the sound
speed. See [32] for more discussion. Considering this case l1

i 5 u 2 c, l2
i 5 u, l3

i 5 u 1 c. (48)
should be sufficient to illuminate the main features of the
splittings. (The splittings for the full Euler equations can The fluctuations are
be found in [42] and in examples included with the CLAW-

PACK software.)
In two space dimensions the isothermal equations take A 6Dqij 5 O3

p51
(lp

i )6W p
i ,

the form

perhaps modified by an entropy fix as discussed in [29, 32].
To define the transverse fluctuations, we use the same­

­t 3
r

ru

rv
41

­

­x 3
ru

ruv 1 c2u

ruv
41

­

­y 3
rv

ruv

rv2 1 c2v
45 0. (44) average states from qi21, j and qij to define the matrix B 5

g9(q):

Here c is the constant sound speed. Suppose that we use
the Roe approximate Riemann solver to solve the Riemann

B 5 3
0 0 1

2uv v u

2v 2 1 c2 0 2v
4 .problem normal to each cell face. The Roe solver between

states qi21, j and qij , for example, is based on averaged states

We have the eigen-decomposition B 5 TMT 21, whereu 5
Ïri21, j ui21, j 1 Ïri, j ui, j

Ïri21, j 1 Ïri, j

, v 5
Ïri21, j vi21, j 1 Ïri, j vi, j

Ïri21, j 1 Ïri, j

.

(45)

The Roe matrix A 5 Aij is simply the Jacobian matrix T 5 3
1 0 1

u 1 u

v 2 c 0 v 1 c
4 , T 21 5

1
2c 3

v 1 c 0 21

22cu 2c 0

2v 1 c 0 1
4f 9(q) based on these averaged states:

and the eigenvalues (transverse wave speeds) are
A 5 3

0 1 0

2u 2 1 c 2u 0

2u v v u
4 .

e1
i 5 v 2 c, e2

i 5 v, e3
i 5 v 1 c.
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We then decompose A 2Dqij and A 1Dqij into eigenvectors where r 5 Ïx2 1 y2. This data gives a single hump centered
at r 5 0.25. The problem is solved on the quarterof this matrix, which gives transverse waves. The up-going

transverse fluctuations are obtained by splitting A 1Dqij plane section [0, 1] 3 [0, 1], with solid wall boundary
conditions [29] along x 5 0 and y 5 0, which gives theinto eigenvectors of B:
same radial solution as would be obtained over a larger
domain.

Figure 5 shows scatter plots of the two-dimensional solu-
tions at time t 5 0.5 on two different grids. The solid lineT 1 5 b1 3

1

u

v 2 c
4 , T 2 5 b2 3

0

1

0
4 , T 3 5 b3 3

1

u

v 1 c
4 ,

is the ‘‘exact’’ density as a function of r, as computed by
the one-dimensional code. The points show the N 2 values
rij (N 5 20, 40) on the two-dimensional grid, plotted against(49)
the distance each point is from the origin. This way of
viewing the solution shows not only the pointwise error atwhere b 5 T 21(A 1Dqij ) and then setting
each point, but also the radial symmetry of the computed
solution, as seen by the lack of scatter from the true so-
lution.

B 1A *Dqij 5 O3
s51

(es
ij )

1T s .
The table in Fig. 5 shows the computed error in each

component in both the 1-norm and max-norm. The order
of accuracy is estimated from the two finest grids. In theseSimilarly, to obtain the down-going transverse fluctuations
computations no limiters were used. Similar results in threewe split A 2Dqij as in (49) but now with b 5 T 21(A 2Dqij ) space dimensions can be found in [23].and then set

EXAMPLE 3.6.3. As an example to show how these algo-
rithms perform on shock waves, we consider a two-dimen-

B 2A *Dqij 5 O3
s51

(es
ij )

2T s .
sional Riemann problem of the type studied in [48, 49].
The data consists of four constant values in four quadrants
chosen so that each pair of data gives a single shock wave

Since much of the computational work of the Roe ap- in its solution. The interaction at the corner leads to a
proximate Riemann solver is in the calculation of the aver- more complicated wave structure. This is a nice sample
ages (45) (even more so for the full Euler equations), problem since the geometry and boundary conditions (ex-
the solution of the transverse Riemann problem is less trapolation) are very simple. For other computations (see,
expensive than the initial Riemann solution normal to the e.g., [49, 26, 33]).
interface. Moreover, it does not appear necessary to apply Some results on a 200 3 200 grid are shown in Fig. 6
any entropy fix in this step, further reducing the cost of for the case corresponding to Fig. 4b in [49]. The two
the transverse splitting. computations shown here were identical, except for the

Note that in the two-dimensional algorithm, at each cell choice of limiter functions. On the left the superbee limiter
interface we must solve one normal Riemann problem and was used, whereas on the right the ‘‘monotonized cen-
then do two transverse splittings, one of A 2Dqij and then tered’’ limiter was used. Both give equally sharp resolution
one of A 1Dqij . More implementation details can be found of the primary shock waves, but have different behavior
by looking at the examples in CLAWPACK. on the unstable slip lines. The superbee limiter, which is

more compressive, gives sharper slip lines and, as a result,EXAMPLE 3.6.2. We next verify second-order accuracy
exhibits the rollup behavior expected from a Kelvin–of the algorithm by solving the two-dimensional Euler
Helmholz instability.equations for a gamma-law gas with radially symmetric

smooth initial data. The results on a sequence of grids are
compared to the ‘‘exact’’ solution obtained by solving the 3.7. Stability
one-dimensional Euler equations with a source term for

The multidimensional wave propagation algorithms de-radial symmetry on a much finer grid. The initial data has
scribed above appear to have very good stability propertieszero velocity and
for general systems of conservation laws, allowing Courant
numbers up to 1. Here the Courant number CFL is de-

r(x, y, 0) 5 E(x, y, 0) fined by

5H1 2 0.1(cos(4fr) 2 1) if 0 , r , 0.5

1 if r $ 0.5, CFL 5 max(lDt /Dx, eDt /Dy),
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FIG. 5. Scatter plot of the computed density vs distance from origin for two-dimensional computations with smooth radially symmetric solution.
Solution at t 5 0.5, before solution has hit the boundary. (a) 20 3 20 grid. (b) 40 3 40 grid. The table shows the errors computed on three different
grids, by comparing with the one-dimensional fine grid solution. The order of accuracy is estimated from the two finest grids. Left: scatter plot of
density vs r on 20 3 20 grid. Right: scatter plot of density vs r on 40 3 40 grid.

with l and e being the maximum wave speeds in the x- arises from the upwind handling of the transverse fluxes,
whereas Lax–Wendroff uses a centered average forand y-directions, respectively.

For the scalar advection equation this gives an im- these terms.
Similar improvement can be shown for linear hyperbolicprovement over the standard Lax–Wendroff method,

for example, as illustrated in [35]. The improvement systems using von Neumann analysis, as we now show. For

FIG. 6. Density contours for a two-dimensional Riemann problem on a 200 3 200 grid. Left: superbee limiter. Right; monotonized centered limiter.
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the linear system qt 1 Aqx 1 Bqy 5 0, consider data of When the second-order corrections (39) are also included
(but not propagated transversely), we obtainthe form

qIJ 5 exp(i(jxI 1 hyJ)),

T 2,1
A 5 T 1,1

A 1
1
2

(A1 2 A2)SI 2
Dt
Dx

(A1 2 A2)D (1 2 e2ijDx ).
where i 5 Ï21 in this section. A linear scheme then gives

qIJ 5 T(j, h)qIJ , Finally, if we also propagate the second-order correc-
tions transversely,

where the ‘‘amplification matrix’’ T(j, h) depends on the
wave numbers j and h (and also, of course, on the particular

T 2,2
A 5 T 2,1

A 2
1
2

Dt
Dy

(B1 2 B2)SI 2
Dt
Dy

(B1 2 B2)DA and B, as well as the mesh ratios Dt/Dx and Dt/Dy).
The method is stable in the 2-norm on a particular grid if
r(T(j, h)) # 1 for all j and h, where r is the spectral 3 (1 2 e2ihDy )(eihDy 2 1)(A2 1 A1e2ijDx ).
radius. (see, e.g., [56].)

We can test the stability of the methods on any givenIn general we can write
system of linear equations by numerically computing
maxj,h r(T(j, h)) over a discrete set of points j, h inT(j, h) 5 I 2

Dt
Dx

(eijDx 2 1) TA(j, h)
[0, 2f ] 3 [0, 2f ], where r(T) is the spectral radius of the
matrix T. By doing this for different values of the mesh

2
Dt
Dy

(eijDy 2 1) TB(j, h), ratio Dt/Dx 5 Dt/Dy and observing at what point this value
exceeds 1, it is possible to estimate the stability limit. Note
that the maximum value of the spectral radius will neverwhere the TA and TB terms arise from considering the
be less than 1 since T(0, 0) 5 I.fluxes F and G, respectively.

This has been implemented in a matlab script that isThe form of TA and TB is given below for various forms
available in CLAWPACK. As a typical example we considerof the algorithm. The superscripts (m1 , m2 ) on the matrices
the two-dimensional acoustics equations (40) with waveindicate exactly which method is being studied, as follows:
speed c 5 1, so that

m1 5 H1 if only first-order fluctuation terms are used
2 if second-order corrections are also used

A 5 3
0 1 0

1 0 0

0 0 0
4, B 5 3

0 0 1

0 0 0

1 0 0
4.

m2 5 5
0 if no transverse wave propagation is used
1 if transverse fluctuations as in Section 3.3 are used
2 if second-order corrections are also

propagated transversely, as in Section 3.3. The stability limit for this case gives the stability limit on
cDt/Dx for general wave speed c, since c simply enters as

For upwind differencing with no transverse propagation, a scalar factor.
Table I shows the results for each method, and also for

T 1,0
A 5 e2ijDx A1 1 A2 the standard Lax–Wendroff method for comparison. For

Lax–Wendroff,T 1,0
B 5 e2ihDy B1 1 B2.

For the other algorithms we will only display TA to save T LW
A 5 (A1e2ijDx 1 A2) 2

1
8

Dt
Dx

AB(eihDy 2 e2ihDy )(1 1 e2ijDx )
space. The matrix TB can be obtained by replacing A, j,
Dx by B, h, Dy, respectively, and vice versa.

1
1
2

(A1 2 A2) SI 2
Dt
Dx

(A1 2 A2)D (1 2 e2ijDx ).When transverse propagation of the first-order waves is
included, we find that

The Lax–Wendroff method is stable only for cDt/Dx , 0.7
T 1,1

A 5 T 1,0
A 2

1
2

Dt
Dy

(A1B1(1 2 e2ihDy ) approximately. The pure upwind method denoted (1,0) is
stable only for cDt/Dx # As. Both of these results are seen in

1 A1B2(eihDy 2 1))e2ijDx the table. By contrast, all of the wave propagation methods
which include the correct transverse propagation of the

2
1
2

Dt
Dy

(A2B1(1 2 e2ihDy ) first-order waves, methods (1, 1), (2, 1), and (2, 2) are seen
to be stable for cDt/Dx # 1, the best that can be expected.
This is also confirmed by computations with CLAWPACK.1 A2B2(eihDy 2 1)).
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TABLE I at the interface between (i 2 1, j) and (i, j), for exam-
ple, givesAmplication Factors for the Various Methods Applied to

Two-Dimensional Linear Acoustics

maxj,h r(T(j, h)) for
cDt
Dx W 1 5 a1 3

2ci21, j

1/ri21, j

0
4, W 2 5 a2 3

ci, j

1/rij

0
4,T 1,0 T 1,1 T 2,1 T 2,2 TLW

0.10 1.00 1.00 1.00 1.00 1.00
0.20 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00 where
0.40 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00
0.51 1.03 1.00 1.00 1.00 1.00 a1 5 (2Dq1/rij 1 cijDq2)/(ci21, j /rij 1 cij /ri21, j)
0.60 1.40 1.00 1.00 1.00 1.00

a2 5 (Dq1/ri21, j 1 ci21, jDq2)/(ci21, j /rij 1 cij /ri21, j).0.70 1.80 1.00 1.00 1.00 1.01
0.80 2.20 1.00 1.00 1.00 1.53
0.90 2.60 1.00 1.00 1.00 2.21

Again the fluctuations A 2Dq and A 1Dq are given by the1.00 3.00 1.00 1.00 1.00 2.97
product of the waves and wave speeds,1.01 3.04 1.04 1.04 1.08 3.04

A 2Dq 5 l1
i W 1, A 1Dq 5 l2

i W 2,

3.8. Nonconservative Systems where l1
i 5 2ci21, j and l2

i 5 cij .

Nonconservative equations are handled in two dimen- Transverse propagation. The rightgoing fluctuation
sions in exactly the same way as in one space dimension, A 1Dq is split into up-going and down-going transverse
with the addition of a transverse splitting. The ‘‘flux differ- fluctuations B1A 1Dqij and B2A 1Dqij that modify the
ences’’ A 2Dqij and A 1Dqij are defined by the Riemann fluxes Gi, j11 and Gij above and below the cell (i, j). We
solution normal to each interface, and these are then split can think of first splitting this fluctuation into waves
in the transverse direction using the eigenstructure in that
direction. This is best illustrated with an example.

EXAMPLE 3.8.1. As an example we consider two-di-
b1 3

2cij

0

1/rij
4, b2 3

cij

0

1/rij
4,mensional acoustics in a heterogeneous material. The

equations are

qt 1 A(x, y)qx 1 B(x, y)qy 5 0, moving vertically with speeds 2cij and 1cij , respectively.
But now these waves must be split at the interface into
transmitted and reflected pieces. Only the transmittedwhere
parts are used in defining the transverse fluctuations which
modify the fluxes above or below this cell. The downward
transmitted wave should be of the form

q 5 3
p

u

v
4, A 5 3

0 K(x, y) 0

1/r(x, y) 0 0

0 0 0
4,

b̃1 3
2ci, j21

0

1/ri, j21
4 with speed 2ci, j21

B 5 3
0 0 K(x, y)

0 0 0

1/r(x, y) 0 0
4.

and we set

The solution to the Riemann problem normal to each cell
interface is done exactly as in the one-dimensional solution B 1A 1Dqij 5 2ci, j21 b̃1 3

2ci, j21

0

1/ri, j21
4.

of Section 2.6. Let rij be the density and sound speed in
the (i, j) cell, where c 5 ÏK/r. Then the Riemann problem
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FIG. 7. Plane wave hitting an interface in sound speed with the acoustics equations. The initial data and true solution at time t 5 0.64.

The upward transmitted wave is of the form and b ; 1. As initial data we take a plane wave with a
single hump propagating in some direction at an angle to
the grid and interface. We can easily compute the reflected
and transmitted waves (see the CLAWPACK code and docu-

b̃2 3
2ci, j11

0

1/ri, j11
4 with speed 1ci, j11 mentation for details).

Figure 7 shows the initial data and true solution at time
t 5 0.64 for the case studied. Figure 8 shows computed

and we set results at this same time on two different grids. Along with
the contour plot, two cross sections of the solution along
x 5 0.6 and x 5 1.0 are shown. We observe good accuracy
of both the transmitted and reflected waves.

B 2A 1Dqij 5 1ci, j11 b̃2 3
2ci, j11

0

1/ri, j11
4. In these computations the superbee limiter was used.

Without a limiter, dispersive wave behavior would be seen
with the second-order method, leading to spurious oscilla-

Solving first for b1, b2 and then for b̃1, b̃2, we find that tions and phase errors. With the limiter there are no spuri-
ous oscillations and the limiters are apparently effective
even as the wave interacts with the interface.b̃1 5 (2(A 1Dq)1/rij 1 (A 1Dq)3cij)/(ci, j21 /rij 1 cij /ri, j21)

Boundary conditions for this two-dimensional computa-(50)
tion are set in a subroutine that extends the solution to
two rows of ghost cells along each side of the physicalb̃2 5 (2(A 1Dq)1/rij 1 (A 1Dq)3cij)/(cij /ri, j11 1 ci, j11 /rij),
domain. For this computation the exact solution is specified(51)
in all ghost cells at each step of the computation. This
minimizes the effects of numerical boundary conditions onwhere (A 1Dq)1 and (A 1Dq)3 are the first and third compo-
the computed results. This appears to be an over-specifica-nents of the vector A 1Dq, respectively. The up-going and
tion of data since there is only one incoming characteristicdown-going transverse fluctuations B 1A 1Dqij and
at each boundary. However, with a wave propagationB 2A 1Dqij are given by the product of the respective wave
approach based on Riemann solvers it is possible to over-speed and wave, as indicated above.
specify in this manner without exciting instabilities since

EXAMPLE 3.8.2. This example shows a plane wave strik- solving the Riemann problem properly selects the incom-
ing an interface in density. We first consider the case where ing characteristic automatically.
the interface is aligned with the grid, with

EXAMPLE 3.8.3. Next we consider the same example
but with the interface (and plane waves) rotated at an

r(x, y) 5 5r1 5 1 if y , y0

r2 5 4 if y . y0

angle to the grid, so that the interface cuts through grid
cells. In the previous example we had ri j 5 r1 or r2 in
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FIG. 8. Plane wave hitting an interface that is aligned with the grid, as computed by CLAWPACK on a 75 3 50 grid (top figures) and 300 3 200
grid (bottom figures).

every cell, with a sharp interface aligned with the grid. the same way as discontinuities are smeared in a shock
computation.Now the grid cells that are cut by the grid are assigned a

value ri j obtained by averaging r(x, y) over the grid cell, Better accuracy at the interface can be achieved by com-
bining the CLAWPACK algorithms with an immersed inter-yielding a convex combination of r1 and r2 . With many

algorithms this type of averaging would lead to consider- face method, similar to methods developed in [36, 37, 39],
which can give second-order accurate results on a uniformable loss of resolution and the generation of numerical

noise as the wave interacts with the smeared interface. grid even when there are discontinuities that are not
aligned with the grid. This was studied in [38] for theThe nonconservative wave propagation methods devel-

oped here seem to be very robust. Figure 9 shows results acoustics equations and has also been extended to elasticity
[63]. A discussion of this technique is beyond the scope ofat the same time as before. The solution is nearly as good

as when the interface was aligned with the grid. the present paper.
Analysis of the error on slices away from the boundaries

shows that in both cases the pressure is only first-order
3.9. Capacity-Form Differencing

accurate, when measured in the 1-norm or max-norm. This
is not surprising since the solution is not smooth as it passes In two space dimensions, capacity-form differencing

takes essentially the same form as in one dimension, withthrough the interface. Moreover, the velocities, which are
discontinuous across the interface, are smeared in much the obvious extension of (33) to a form analogous to (28).
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EXAMPLE 3.9.1. As an example we consider advection We take u(x, y), v(x, y)) to be a fixed velocity field, chosen
so thatof a tracer in a density-stratified flow. The density r(x, y)

is taken to be constant in time, and in this test problem
varies only with y, e.g., (54)(ru)x 1 (rv)y 5 0.

This is a consequence of conservation of mass and the fact
(52)r(x, y) 5 r(y) 5 e2cy for some c, that rt ; 0. Then Eq. (53) can be rewritten as

(55)rqt 1 ruqx 1 rvqy 5 0.as one would expect in the atmosphere. Now q(x, y, t)
represents the mass fraction of some tracer, and so rq is the

We could eliminate r from this equation, but solving themass per unit volume of the tracer, which is the conserved
resulting advection equation qt 1 uqx 1 vqy 5 0 wouldquantity. The conservation law is
not guarantee conservation of rq. Instead we solve in
the form (55) using capacity-form differencing with
k(x, y) 5 r(x, y).(53)rqt 1 (ruq)x 1 (rvq)y 5 0.

FIG. 9. Plane wave hitting an interface that is not aligned with the grid, as computed by CLAWPACK on a 75 3 50 grid (top figures) and 300 3 200
grid (bottom figures).
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FIG. 10. Density-stratified flow over a hump. Left: initial data is 1 inside the circular region and 0 elsewhere. The region where the solution is
1 at time t 5 0.18 is also shown. Right: Computed results on a 200 3 100 Cartesian grid.

As a specific test, consider flow over a hump with the Note that the area of the blob increases as it rises and
decreases again as it falls. In this problem the area is notbottom topography given by
conserved since it is the integral of rq that is conserved,
not the integral of q. The value of q remains 1 inside the

B(x) 5
a

1 1 bx2 (56) blob since q remains constant along particle paths for the
color equation. The severe stretching of the blob is due to
the fact that the velocity increases exponentially with y,

in the domain 21 # x # 1, B(x) # y # 1 (with a , 1). so that the top of the blob moves more quickly than the
The velocity field is chosen by using the ‘‘stream function’’ bottom.

Figure 10 also shows computed results on a 200 3 100
grid using the superbee limiter. Using capacity-form differ-

c(x, y) 5
y 2 B(x)
1 2 B(x) encing the sum of ri jqij over all grid points is exactly con-

served (to machine precision) until the time at which tracer
begins to pass through the right boundary.

to define
3.10. Curvilinear Grids and Coordiante Mappings

In principle the capacity-form differencing introducedru 5 cy 5
1

1 2 B(x)
,

in Section 3.9 can be used to solve any conservation law
on a curvilinear grid that can be smoothly mapped to a

rv 5 2cx 5
B9(x)(1 2 y)
(1 2 B(x))2 , uniform rectangular grid. This will be demonstrated here

for advection and applied to the example of stratified flow
from the previous section.

so that condition (54) is satisfied. Dividing by r gives the Consider the advection equation
velocity field. Note that (u, v) is not divergence free and
c is not a stream function for this velocity, although it is (57)qt 1 (u(x, y, t)q)x 1 (v(x, y, t)q)y 5 0
true that contours of constant c give streamlines of the
flow. Note also that with the density profile (52), the veloci- in an irregular region of the x–y plane that can be mapped
ties increase exponentially with y. This may not be reason- smoothly to a rectangle. Then equation (57) can be trans-
able physically, but it does give a challenging test problem formed to an advection equation on the rectangle and
that is easy to set up. solved on a uniform Cartesian grid. The computational

In the test below we use a 5 0.6, b 5 10, and c 5 2.5. points will be denoted by (j i , hj) with j i 5 iDj, hj 5 jDh.
Figure 10 shows the initial data and exact solution at time A grid mapping defines the relation between the point
t 5 0.18 for data consisting of a circular blob of tracer: (j i , hj) and the corresponding physical point (xij , yij). We

assume that this mapping is defined by a differentiable
function

q(x, y, 0) 5 H1 if (x 1 0.75)2 1 (y 2 0.5)2 , (0.2)2

0 otherwise. xij 5 X(j i , hj), yij 5 Y(j i hj).
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Then the advection equation (57) can be transformed to as shown in Fig. 11. We now solve the advection equation

J(j, h)qt 1 (û(j, h, t)q)j 1 (v̂(j, h, t)q)h 5 0, (58) r(Y(j, h))J(j, h)qt 1 r(Y(j, h))û(j, h)qj
(61)

1 r(Y(j, h))v̂(j, h)v̂(j, h)qn 5 0,where

using capacity-form differencing withû(j, h, t) 5 Yh(j, h)u(X(j, h), Y(j, h))

2 Xh(j, h)v(X(j, h), Y(j, h)) k(j, h) 5 r(Y(j, h))J(j, h).

v̂(j, h, t) 5 2Yj(j, h)u(X(j, h), Y(j, h)) (59)
Computational results are shown in Fig. 11, again on a

1 Xj(j, h)v(X(j, h), Y(j, h)) 200 3 100 grid as in Example 3.9.1. The results are quite
similar and in the computation o ri j Ji jqij is exactly con-J(j, h) 5 Xj(j, h)Yh(j, h) 2 Xh(j, h)Yj(j, h).
served (to machine precision). This is the proper quantity
to conserve since it approximates the integral of rq.Here J is the Jacobian of the grid transformation.

Even better results can be obtained by choosing the gridIf the flow is divergence free, ux 1 vy 5 0, then it is easy
so that grid lines are streamlines of the flow. For this testto verify that ûj 1 v̂h 5 0 as well. Then (58) can also be
problem with constant velocities this is easy to accomplish:written in the advective form

Grid 2: X(j, h) 5 j, Y(j, h) 5 B(j) 1 h(1 2 B(j)).(60)Jqt 1 ûqj 1 v̂qh 5 0.

EXAMPLE 3.10.1. The stratified-flow advection problem Figure 11 also shows the grid and computed results, which
are considerably sharper since the velocity is now zero inof Example 3.9.1 can be solved on a curvilinear grid that

conforms to the bottom topography. One choice might be the h-direction, minimizing numerical smearing.
In all of these tests (the Cartesian grid, Grid 1, and

Grid 2) the superbee limiter was used and mild overshootsGrid 1: X(j, h) 5 j, Y(j, h) 5 B(j) 1 h,

FIG. 11. Density-stratified flow over a hump. Computational results on two different 200 3 100 curvilinear grids. The grids are shown for a
coarser grid size, 50 3 25.
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TABLE II to briefly outline what the user must provide and how it
relates to the algorithms as presented here.Errors in Stratified Flow over a Hump with Smooth Initial

In addition to a driver program, which sets the initialData on Three Different Grids
conditions and calls CLAWPACK, the user must provide sub-

1-norm errors Max-norm errors routines to solve the Riemann problems. In one space
dimension a single routine rp1 is needed, which takes data

j Cartesian Grid 1 Grid 2 Cartesian Grid 1 Grid 2
ql and qr and returns the fluctuations A 2 Dq and A 1 Dq
and, also, the waves W p and speeds lp.0.04 5.06D-03 6.9D-03 5.71D-03 1.20D-01 1.34D-01 7.55D-02

0.02 1.28D-03 1.9D-03 1.46D-03 3.04D-02 4.55D-02 1.98D-02 In two dimensions the user must provide two Riemann
0.01 4.62D-04 6.04D-04 3.89D-04 9.32D-03 1.33D-02 4.90D-03 solvers. The first, rpn2, solves Riemann problems normal

Order 1.47 1.66 1.91 1.71 1.77 2.01 to each cell interface and has the same outputs as the one-
dimensional routine rp1. This same routine is called in
both the x- and y-directions and a parameter ixy indicates
which is the normal direction. Often the formulas for solv-
ing the Riemann problem are nearly identical in the twoand/or undershoots were observed at the level of about
directions, as in the acoustics or Euler equations, once ixy2%. The contour levels plotted in each case are at q 5
has been used to determine which velocity components is0.05, 0.10, 0.15, ..., 0.95. Use of the minmod limiter gives
normal to the interface.strictly monotonic results but slightly more smearing.

The second Riemann solver rpt2 takes a fluctuation
EXAMPLE 3.10.2. We now check the order of accuracy

A * Dq and returns the transverse fluctuation splitting
for the stratified flow problem on each of the grids used

B2A * Dqij and B1A * Dqij . This routine is called twice
above, as well as the Cartesian grid of Example 3.9.1. at each interface once applied to A 2 Dq and once to
Smooth initial data is now used, given by

A 1 Dq. This routine typically involves similar formulas as
in rpn2, but it may be much simpler. For example, in the

q(x, y, 0) 5 exp(250((x 1 0.5)2 1 (y 2 0.5)2)) Euler equations the Roe averages are computed in rpn2
and then passed in a common block to rpt2. Again the

and flow is over a hump with a 5 0.4 and b 5 10 in (56) same routine rpt2 is also used in the y-direction, in which
and the equation was solved up to time t 5 0.1. The exact case the input would be a fluctuation B * Dq resulting from
solution can be computed by integrating backwards along calling rpn2 in this direction and the outputs of rpt2
streamlines using an ODE solver. To compute q(x, y, t) at would be interpreted as A 2B * Dqij and A 1B * Dqij .
any arbitrary point we solve The user must also provide a routine that specifies the

boundary conditions. This routine extends the data at the
X9(t) 5 2u(X(t), Y(t)), X(0) 5 x, start of each time step from the computational domain to

a border of two ghost cells along each side.Y9(t) 5 2v(X(t), Y(t)), X(0) 5 y,
A capacity function k(x, y) can be specified as an array

of values on the grid. In addition, a source term can beup to time t 5 t and then
included, so that the equations being solved have the form

q(x, y, t) 5 q(X(t), Y(t), 0).
k(x, y)qt 1 A(q, x, y, t)qx 1 B(q, x, y, t)qy 5 c(q, k, x, y, t).

This has been done using the code LSODE from netlib,
The source term is handled by a fractional step (splitting)with a tolerance of 1026.
method. In each time step the homogeneous hyperbolicTable II shows the 1-norm of the error in the computed
system is first advanced over time Dt, and then the sourcesolution as a function of Dj 5 Dh as each grid is refined.
terms are advanced in each grid cell over the same timeGood accuracy is observed on each grid. Note that the
increment. An option allows the Strang splitting [55] to becurvilinear grids used here are not orthogonal.
used, in which the source terms are split into two half steps,
one before and one after the hyperbolic step. Formally4. THE CLAWPACK SOFTWARE
this gives second-order accuracy, but in practice an effect
similar to what was analyzed in Section 2.4 for nonauto-All of the numerical results presented in this paper were

computed with the CLAWPACK software, and the driver nomous systems is seen; the ‘‘first-order’’ splitting gives
essentially as good results in the high-resolution contextprograms are available within CLAWPACK.

Details of the implementation and the use of CLAWPACK and requires less work per time step. In principle one could
combine the second half step on the source terms fromare given in [29] and within the software, and they will not

be discussed extensively here. However, it may be useful one time step with the first half step on the next time step,
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which shows that the Strang splitting and ‘‘first-order’’ derivatives are approximated, and limiter functions are
used to achieve high resolution. That approach is funda-splitting differ only in how the first and last time steps are

handled (which is why no loss in resolution is observed). mentally different from what is used here in that it can
summarized as ‘‘first interpolate to the interface and thenThis would be more difficult to implement, however, since

in CLAWPACK variable time steps can be automatically compute the flux by solving the Riemann problem.’’ The
wave-propagation approach is the other way around: ‘‘firstchosen based on a desired Courant number, which will

change from step to step. solve the Riemann problem and then distribute the infor-
mation.’’A variety of Riemann solvers and boundary conditions

routines are provided in CLAWPACK, not only for the exam- Consider the interface between cells (i 2 1, j) and (i, j).
In the ‘‘interpolate first’’ approach, two values q2 andples presented here but also for other problems, including

Burgers’ equation, the isothermal equations, and shallow q1 to q(xi , yj 1 Dy/2, tn 1 Dt/2) are first obtained as
approximations to the value at the interface a half timewater equations.
step forward in time. A Riemann problem is then solved
based on these states to obtain the numerical flux. If5. EFFICIENCY AND COMPARISON WITH
q2 5 qi21, j and q1 5 qij then this would be just Godunov’sOTHER APPROACHES
method. The high-resolution method is obtained by defin-
ing q2, say, as an approximation toThe solution of Riemann problems is typically a very

expensive part of the procedure. These Riemann-based
high-resolution methods are intended primarily for a cer-

qi21, j 1
Dx
2

qx 1
Dt
2

qt ,tain class of problems where discontinuities in the problem
or its solution (or at least steep gradients) lead to diffi-
culties with more standard finite-difference methods. For
problems with smooth solutions it may be possible to ob- where qx is then approximated in cell (i 2 1, j) by defining

a slope in the x-direction based on the data in this celltain better accuracy much more efficiently by using high-
order methods that do not require Riemann solutions. and neighboring cells, using some form of limiter to avoid

oscillations. The qt term is replaced by 2( f (q)x 1 g(q)y)The wave-propagation algorithms in two dimensions re-
quire solving transverse Riemann problems as well as Rie- and then f (q)x 5 f 9(q)qx is approximated again using the

x-slope, together with the Jacobian matrix and a character-mann problems in the normal direction. This Riemann
solver may be much simpler than the normal solver, as istic extrapolation scheme while the g(q)y term is approxi-

mated by differencing Godunov fluxes in the y-direction.indicated in Section 3.2 for the Euler equations, but still
this requires additional work. For many problems a viable This is just a brief sketch of the full algorithm; for details

consult [13].alternative is dimensional splitting, in which the one-
dimensional algorithm is applied in alternating sweeps in In the wave-propagation approach we start by solving

a Riemann problem between states qi21, j and qij . The infor-the x- and y-directions. This is included as an option in
CLAWPACK, and for many problems this is nearly as effec- mation obtained is used to generate both the first-order

updates and also the second-order corrections, since thetive as the full multidimensional algorithm at reduced cost.
For other problems it appears that the multidimensional jump across each wave, divided by Dx, gives a characteristic

splitting of an approximation of qx quite naturally. Trans-algorithms are better. In some applications it may also be
inconvenient to use a splitting technique. For example, in verse derivatives are defined by characteristic splitting of

these waves in the transverse direction.an incompressible velocity field where x- and y-effects must
properly cancel for conservation the use of the multidimen- The total amount of work appears to be similar between

the two methods. With the ‘‘interpolate first’’ approach,sional method allows the advective form of the equations to
be used to good advantage (as discussed in [35]). Boundary at each grid interface one must do a characteristic decom-

position of the slope qx (analogous to a Riemann solve),conditions may also be more difficult to impose with split-
ting methods. Unsplit methods are also most convenient solve a Riemann problem in the transverse direction to

approximate g(q)y , and finally solve the Riemann problemin conjunction with adaptive mesh refinement or Cartesian
grid treatments of irregular boundaries (e.g., [6, 7, 11]). between the states q2 and q1. With the wave-propagation

algorithm one first solves a normal Riemann problem andThe methods proposed here are related to other multidi-
mensional methods proposed in the literature, some of then two transverse Riemann problems.

The wave-propagation algorithms appear to be a morewhich are mentioned in the introduction. In particular, it
is interesting to compare this method with the approach direct generalization of one-dimensional algorithms. They

generalizes easily to other hyperbolic conservation laws,of Collela [13] and the three-dimensional generalization
of Saltzman [47], which is similar in that one-dimensional and also allows extension to nonconservative equations

and other problems as presented here.Riemann problems are solved at grid interfaces, transverse
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